Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a) Ta có:
\(x^2-2(m-1)x+2m-3=0\)
\(\Leftrightarrow (x^2-1)-2(m-1)x+2(m-1)=0\)
\(\Leftrightarrow (x-1)(x+1)-2(m-1)(x-1)=0\)
\(\Leftrightarrow (x-1)[x+1-2(m-1)]=0\)
\(\Leftrightarrow (x-1)(x-2m+3)=0\)
Do đó pt có nghiệm \(x=1\)
b) Nghiệm còn lại của PT là: \(x=2m-3\)
Như vậy : \(x_1-x_2=1\Leftrightarrow \left[\begin{matrix} 1-(2m-3)=1\\ (2m-3)-1=1\end{matrix}\right.\)
\(\Leftrightarrow \left[\begin{matrix} m=\frac{3}{2}\\ m=\frac{5}{2}\end{matrix}\right.\)
a: \(\text{Δ}=\left(4m-4\right)^2-4\left(-4m+10\right)\)
\(=16m^2-32m+16+16m-40\)
\(=16m^2-16m-24\)
\(=8\left(2m^2-2m-3\right)\)
Để pT có nghiệm kép thì \(2m^2-2m-3=0\)
hay \(m\in\left\{\dfrac{1+\sqrt{7}}{2};\dfrac{1-\sqrt{7}}{2}\right\}\)
b: Thay x=2 vào PT, ta được:
\(4+8\left(m-1\right)-4m+10=0\)
=>8m-8-4m+14=0
=>4m+6=0
hay m=-3/2
Theo VI-et, ta được: \(x_1+x_2=-4\left(m-1\right)=-4\cdot\dfrac{-5}{2}=10\)
=>x2=8
a)xét phương trình có: \(\Delta=b^2-4ac=[-\left(2m-3\right)]^2-4\left(m^2-2m+2\right)=4m^2-12m+9-4m^2+8m-8=1-4m\) để phương trình có 2 nghiệm phân biệt thì \(\Delta\)>0 hay 1-4m>0 <=> 4m<1 <=> m<\(\frac{1}{4}\)
Vậy với m<\(\frac{1}{4}\) thì phương trình có 2 nghiệm phân biệt
b) Theo định lí Vi-ét có: \(\left\{{}\begin{matrix}x_1+x_2=\frac{-b}{a}=2m-3\\x_1.x_2=\frac{c}{a}=m^2-2m+2\end{matrix}\right.\)
x12 +x22=(x12 +2x1.x2+x22)-2x1.x2=(x1+x2)2-2x1.x2=(2m-3)2-2(m2-2m+2) =4m2-12m+9-2m2+4m-4=2m2-8m+5
Vậy x12+x22=2m2-8m+5
a) \(3+\sqrt{2x-3}=x\)
\(\Leftrightarrow\sqrt{2x-3}=x-3\)
\(\Leftrightarrow\hept{\begin{cases}x-3\ge0\\2x-3=\left(x-3\right)^2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x-3\ge0\\x^2-8x+12=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ge3\\x=2;x=6\end{cases}}\)
\(\Leftrightarrow x=6\)
b) Ta có: \(F\left(2\right)=a\left(2\right)^3+b.2-1=2009\)
\(\Rightarrow a.\left(2\right)^3+b.2=2009+1=2010\)
Suy ra \(F\left(-2\right)=a.\left(-2\right)^3+b\left(-2\right)-1\)
\(=-\left[a.\left(2\right)^3+b.2\right]-1\)
\(=-\left[2010\right]-1\)
\(=-2011\)
c) Nhẩm thấy x = 1 là nghiệm nên ta phân tách vế trái thành nhân tử có một thừa số là (x -1).
Ta chia đa thức vế trái cho \(x-1\) thì được thương là \(\left(m+1\right)x^2+4mx+4m-1\).
Vậy phương trình tích là:
\(\left(x-1\right)\left[\left(m+1\right)x^2+4mx+4m-1\right]=0\)
Ta có:
\(x^2+x+1=x^2+2.x.\frac{1}{2}+\frac{1}{4}-\frac{1}{4}+1\)\(=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{3}>0\)
Vì \(x^2+x+1>0\)nên phương trình đã cho vô nghiệm, mà nó đã vô nghiệm thì \(x^2+x+1\ne0\)với mọi x, thế nên ta sẽ có: \(1^2+1+1=3\ne0\)với x = 1
Ở đây với x thuộc R thì ko có giá trị nào thỏa pt đã cho.
=> Sai ở chỗ sử dụng phương trình vô nghiệm để thế x = 1 vào
(Với ở đây mình nghĩ sẽ sai cả bài vì ko thể dùng phương trình vô nghiệm để biến đổi được vì ta luôn có \(x^2+x+1\ne0\))
Bài này sai ở chỗ thay \(x+1=-x^2\) vào pt thứ hai \(x+1+\frac{1}{x}=0\).
Khi bạn làm điều này, bạn đã vô tình làm cho phát sinh ra nghiệm ngoại lai (một nghiệm khác không phải là nghiệm của pt ban đầu \(x^2+x+1=0\))
Pt ban đầu \(x^2+x+1=0\)không có nghiệm thực, nhưng có 2 nghiệm ảo là \(\frac{-1+i\sqrt{3}}{2};\frac{-1-i\sqrt{3}}{2}\)
Khi biến đổi tương đương sang pt thứ hai \(x+1+\frac{1}{x}=0\), pt vẫn chỉ có 2 nghiệm trên.
Nhưng khi thay \(x+1=-x^2\) vào pt thứ hai \(x+1+\frac{1}{x}=0\), sẽ được phương trình \(-x^2+\frac{1}{x}=0\)có thêm 1 nghiệm nữa là \(x=1\)hoàn toàn không phải là nghiệm của 2 pt ban đầu.
Mình đăng câu hỏi này mong các bạn cẩn thận trong các phép biến đổi tương đương dễ làm phát sinh ra nghiệm ngoại lai, tránh gặp phải những kết quả vô lí như phép chứng minh \(3=0\)vừa rồi.
a) Phương trình đã cho có \(\Delta'=36-6a+a^2=a^2-6a+9+27=\left(a-3\right)^3+27>0\) nên có 2 nghiệm phân biệt với mọi a
b) Theo hệ thức Vi-et ta có \(x_1+x_2=6\Leftrightarrow x_2=6-x_1\)
Ta có \(x_2=x_1^3-8x_1\Leftrightarrow x_1^3-8x_1=6-x_1\Leftrightarrow x_1^3-7x_1-6=0\)
\(\Leftrightarrow x_1^3-x_1-6x_1-6=0\Leftrightarrow x_1\left(x_1-1\right)\left(x_1+1\right)-6\left(x_1+1\right)=0\)
\(\Leftrightarrow\left(x_1+1\right)\left(x_1^2-x_1-6\right)=0\Leftrightarrow\left(x_1+1\right)\left(x_1^2+2x_1-3x_1-6\right)=0\)
\(\Leftrightarrow\left(x_1+1\right)\left[x_1\left(x_1+2\right)-3\left(x_1+2\right)\right]=0\Leftrightarrow\left(x_1+1\right)\left(x_1+2\right)\left(x_1-3\right)=0\)
\(\Leftrightarrow x_1\in\left\{-1;-2;3\right\}\)
*) \(x_1=-1\Leftrightarrow\left(-1\right)^2-6\left(-1\right)+6a-a^2=0\Leftrightarrow a^2-6a-7=0\Leftrightarrow\orbr{\begin{cases}a=-1\\a=7\end{cases}}\)
*) \(x_1=-2\Leftrightarrow\left(-2\right)^2-6\left(-2\right)+6a-a^2=0\Leftrightarrow a^2-6a-16=0\Leftrightarrow\orbr{\begin{cases}a=-2\\a=8\end{cases}}\)
*) \(x_1=3\Leftrightarrow3^2-6\cdot3+6a-a^2=0\Leftrightarrow a^2-6a+9=0\Leftrightarrow a=3\)
Vậy \(a=\left\{-1;-2;3;7;8\right\}\)
Khi pt có nghiệm \(x=\sqrt{2}-1\)
\(\Rightarrow\left(\sqrt{2}-1\right)^2+a\left(\sqrt{2}-1\right)+b=0\)
\(\Rightarrow3-2\sqrt{2}+a\sqrt{2}-a+b=0\)
\(\Rightarrow\left(a-2\right)\sqrt{2}=a-b-3\)
Do a; b hữu tỉ \(\Rightarrow VP\) hữu tỉ \(\Rightarrow VT\) hữu tỉ
Mà \(\sqrt{2}\) vô tỉ nên dấu "=" xảy ra khi và chỉ khi:
\(\left\{{}\begin{matrix}a-2=0\\a-b-3=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=2\\b=-1\end{matrix}\right.\)
Bạn thiếu đề bài rồi !