Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\Delta ABC\) cân tại A, có AM là đường trung tuyến
\(\Rightarrow AM\) cũng là đường trung trực của \(\Delta ABC\)
\(\Rightarrow AM\perp BC\)
\(\Rightarrow\widehat{AMC}=90^0\)
Tứ giác \(AMCN\) có:
\(I\) là trung điểm của AC (gt)
\(I\) là trung điểm của MN (gt)
\(\Rightarrow AMCN\) là hình bình hành
Mà \(\widehat{AMC}=90^0\)
\(\Rightarrow AMCN\) là hình chữ nhật
b) Do \(AMCN\) là hình chữ nhật
\(\Rightarrow AN=CM\) và \(AN\) // \(CM\)
Do \(AN\) // \(CM\) (cmt)
\(\Rightarrow AN\) // \(BM\)
Do \(M\) là trung điểm của \(BC\) (gt)
\(\Rightarrow BM=CM\)
Mà \(AN=CM\left(cmt\right)\)
\(\Rightarrow BM=AN\)
Tứ giác \(ABMN\) có:
\(BM\) // \(AN\) (cmt)
\(BM=AN\left(cmt\right)\)
\(\Rightarrow ABMN\) là hình bình hành
Mà \(E\) là trung điểm của AM
\(\Rightarrow E\) là trung điểm của BN
a) tam giác ABC có I là trung điểm AB; M là trung điểm BC nên IM là đường trung bình của tam giác ABC
=> IM// AC; IM=1/2 AC hay IM=AK
Tứ giác AIKM có IM//AK; IM=AK nên tứ giác AIKM là hình bình hành.
lại có Góc A bằng 90 độ, vậy AIKM là hình chữ nhật.
b) tam giác MEF có I là trung điểm của ME, K là trung điểm của MF nên IK là đường trung bình của tam giác MEF
=> IK//EF
IK=1/2EF hayEF=2IK.
c) Tam giác ABC có I là trung điểm của AB
K là trung điểm của AC
=> Ik là đường trung bình của tam giác ABC
=> IK//BC=> IK//HM, hay IKMH là hình thang.
Vì AIMK là hình chữ nhật(cmt)
nên AI//KM => góc AIK=MKI(so le trong)
ta có IK//BC(cmt) => Góc AIK=IBC(đồng vị)
từ hai điều này suy ra Góc IBH=MKI.(1)
Tam giác AHB vuông tại H, có HI là trung tuyến
=> IH=IB => Góc IBH=IHB. mà Góc IHB=HIK
=> Góc IBH = HIK(2)
Từ (1) và (2) suy ra Góc HIK=MKI
HÌnh thang IKMH có 2 góc kề đáy HIK=MKI bằng nhau, nên IKMH là hình thang cân.
d) Ta có Góc HIK=MKI(cmt)
mà góc MKI=AIK(so le trong)
nên góc AIK=HIK
Xét tam giác AIK và HIK có
AI=IH(cmt)
AIK=HIK(cmt)
IK cạnh chung
=> hai tam giác bằng nhau theo trương hợp(c.g.c)
=>HK=AK
=> IK=2HK=2AK
mà IK=1/2BC(cmt); AK=1/2AC, nên ta có:
1/2BC=2.1/2AC
=> AC=1/2BC.
Tam giác ABC vuông tại A, có AC=1/2BC nên tam giác ABC là nửa tam giác đều
=> Góc ACB=60độ=> Góc ABC=30 độ
câu này mình không chắc lắm, theo mình nghĩ thì khi cho IK=2HK thì đây là điều kiện mới, không theo cái cũ nữa
chứ nếu theo cũ thì chắc góc ABC k thể bằng 30 đc.
a)ta có I là trung điểm của AC ( gt)
I là trung điểm của MK(K dối xứng với M qua I)
=>AMCK là hình bình hành
xét tam giác ABC cân tại A có
AM là trung tuyến của tam giác ABC
=>AM cũng là đường cao của tam giác ABC
=>góc AMC =900
mà AMCK là hình bình hành =>AMCK là hình chữ nhật
b)ta có :KA=CM(AMCK là hình chữ nhật)
mà CM=MB nên KA=MB
Xét tam giác AMK vuông tại A và tam giác MAB vuông tại M
AM : cạnh chung
KA=MB(chứng minh trên)
Suy ra tam giác AMK=tam giác MAB(cgv-cgv)
=>góc AMK=góc BAM (2 góc tương ứng )
Mà hai góc này ở vị trí so le trong nên:
AB song song MK
ta lại có AB=KM(tam giác AMK=tam giác MAB)
=>AKMB là hình bình hành
c)ta có AMCK là hình vuông
=>AM=CM
mà CM=BM(AM là trung tuyến của tam giác ABC)
nên AM=\(\frac{CM+BM}{2}+\frac{BC}{2}\)
=>tam giác ABC vuông cân tại A
Vậy tam giác ABC cần có thêm điều kiện là cân tại A thì AMCK là hình vuông
Câu 1:
a:
ΔABC cân tại A
mà AM là đường trung tuyến
nên AM\(\perp\)BC tại M
Xét tứ giác AMCN có
I là trung điểm chung của AC và MN
=>AMCN là hình bình hành
Hình bình hành AMCN có \(\widehat{AMC}=90^0\)
nên AMCN là hình chữ nhật
b: Ta có: AMCN là hình chữ nhật
=>AN//CM và AN=CM
AN//CM
=>AN//BM
AN=CM
mà CM=BM
nên AN=BM
Xét tứ giác ABMN có
AN//MB
AN=MB
Do đó: ABMN là hình bình hành
=>AM cắt BN tại trung điểm của mỗi đường
mà E là trung điểm của AM
nên E là trung điểm của BN
Câu 2:
a: Xét tứ giác AHBM có
I là trung điểm chung của AB và HM
=>AHBM là hình bình hành
Hình bình hành AHBM có \(\widehat{AHB}=90^0\)
nên AHBM là hình chữ nhật
Câu 1:
a) Tứ giác AMCN có hai đường chéo AC, MN cắt nhau tại trung điểm I của mỗi đường
=> AMCN là hình bình hành
Tam giác ABC cân tại A có AM là trung tuyến
=> AM cũng là đường cao hay AM vuông góc BC
=> AMCN là hình chữ nhật (hbh có 1 góc vuông)
b) Vì AMCN là hình chữ nhật
=> AN//CM; AN=CM
Mà M là trung điểm BC nên AN=CM=BM=1/2 BC
Tứ giác ANMB có:
AN//BM (AN//CM)
AN=BM
=>ANMB là hình bình hành
Hình bình hành ANMB có hai đường chéo AM, BN cắt nhau tại trung điểm của mỗi đường
Mà E là trung điểm AM
=> E cũng là trung điểm BN
Câu 2
Tứ giác AHBM có hai đường chéo HM, AB cắt nhau tại trung điểm I của mỗi đường
=> AHBM là hình bình hành
Mà AH vuông góc BC (AH là đường cao)
=> AHBM là hình chữ nhật