K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác ADME có

\(\widehat{ADM}=\widehat{AEM}=\widehat{DAE}=90^0\)

nên ADME là hình chữ nhật

=>AM=DE

b: ta có: ADME là hình chữ nhật

=>AD//ME và AE//MD

AE//MD

=>MD//AC

AD//ME

=>ME//AB

Xét ΔABC có

M là trung điểm của BC

ME//AB

Do đó; E là trung điểm của AC

Xét ΔABC có

M là trung điểm của BC

MD//AC

Do đó; D là trung điểm của AB

Ta có: MD=AE(ADME là hình chữ nhật)

AE=EC

Do đó: MD=CE

Xét tứ giác DMCE có

DM//CE

DM=CE

Do đó: DMCE là hình bình hành

c: DMCE là hình bình hành

=>DE//MC

=>DE//BC

=>DE//MH

Ta có: ΔAHC vuông tại H

mà HE là đường trung tuyến

nên HE=AE

mà AE=MD

nên HE=MD

Xét tứ giác MHDE có

MH//DE

MD=HE

Do đó: MHDE là hình thang cân

22 tháng 11 2023

a: Xét tứ giác ADME có

\(\widehat{ADM}=\widehat{AEM}=\widehat{DAE}=90^0\)

=>ADME là hình chữ nhật

=>AM=DE

b:

MD\(\perp\)AB

AC\(\perp\)AB

Do đó: MD//AC

ME\(\perp\)AC

AB\(\perp\)AC

Do đó: ME//AB

Xét ΔABC có

M là trung điểm của BC

MD//AC

Do đó: D là trung điểm của AB

Xét ΔABC có

M là trung điểm của BC

ME//AB

Do đó: E là trung điểm của AC

Xét ΔBAC có

M,D lần lượt là trung điểm của BC,BA

=>MD là đường trung bình của ΔBAC

=>MD//AC và \(MD=\dfrac{AC}{2}\)

\(MD=\dfrac{AC}{2}\)

\(CE=\dfrac{AC}{2}\)

Do đó: MD=CE

MD//AC

\(E\in\)AC

Do đó: MD//CE

Xét tứ giác DMCE có

DM//CE

DM=CE

Do đó: DMCE là hình bình hành

c: Xét ΔABC có

D,E lần lượt là trung điểm của AB,AC

=>DE là đường trung bình của ΔABC

=>DE//BC

=>DE//HM

ΔHAC vuông tại H

mà HE là đường trung tuyến

nên \(HE=\dfrac{AC}{2}\)

mà \(MD=\dfrac{AC}{2}\)

nên HE=MD

Xét tứ giác DHME có

ED//MH

=>DHME là hình thang

Hình thang DHME có MD=HE

nên DHME là hình thang cân

18 tháng 10 2023

a: Xét tứ giác ADME có

\(\widehat{ADM}=\widehat{AEM}=\widehat{DAE}=90^0\)

=>ADME là hình chữ nhật

=>AM=DE
b: Xét ΔABC có

M là trung điểm của BC

MD//AC

Do đó: D là trung điểm của AB

Xét ΔABC có

M là trung điểm của BC

ME//AB

Do đó: E là trung điểm của AC

Xét ΔABC có 

D,E lần lượt là trung điểm của AB,AC

=>DE là đường trung bình

=>DE//BC và DE=1/2BC

=>DE//MC và DE=MC

Xét tứ giác DMCE có

DE//MC

DE=MC

Do đó: DMCE là hình bình hành

c: ΔHAC vuông tại H có HE là trung tuyến

nên \(HE=\dfrac{1}{2}AC\)

mà \(MD=\dfrac{1}{2}AC\)

nên HE=MD

Xét tứ giác DHME có

ED//MH

nên DHME là hình thang

mà HE=MD

nên DHME là hình thang cân

ΔHAB vuông tại H

mà HD là trung tuyến

nên HD=AD

EA=EH

DA=DH

Do đó: ED là đường trung trực của AH

Bài 1: 

a: Xét tứ giác ADME có 

\(\widehat{ADM}=\widehat{AEM}=\widehat{DAE}=90^0\)

Do đó: ADME là hình chữ nhật

Suy ra: AM=DE

b: Xét ΔABC có 

M là trung điểm của BC

ME//AB

Do đó: E là trung điểm của AC

Xét ΔABC có 

M là trung điểm của BC

MD//AC

Do đó: D là trung điểm của AB

Xét ΔABC có 

M là trung điểm của BC

D là trung điểm của AB

Do đó: MD là đường trung bình

=>MD//CE và MD=CE
hayDMCE là hình bình hành

4 tháng 1 2017

a) Xét tứ giác ADME có:

∠(DAE) = ∠(ADM) = ∠(AEM) = 90o

⇒ Tứ giác ADME là hình chữ nhật (có ba góc vuông).

b) Ta có ME // AB ( cùng vuông góc AC)

M là trung điểm của BC (gt)

⇒ E là trung điểm của AC.

Ta có E là trung điểm của AC (cmt)

Chứng minh tương tự ta có D là trung điểm của AB

Do đó DE là đường trung bình của ΔABC

⇒ DE // BC và DE = BC/2 hay DE // MC và DE = MC

⇒ Tứ giác CMDE là hình bình hành.

c) Ta có DE // HM (cmt) ⇒ MHDE là hình thang (1)

Lại có HE = AC/2 (tính chất đường trung tuyến của tam giác vuông AHC)

DM = AC/2 (DM là đường trung bình của ΔABC) ⇒ HE = DM (2)

Từ (1) và (2) ⇒ MHDE là hình thang cân.

d) Gọi I là giao điểm của AH và DE. Xét ΔAHB có D là trung điểm của AB, DI // BH (cmt) ⇒ I là trung điểm của AH

Xét ΔDIH và ΔKIA có

IH = IA

∠DIH = ∠AIK (đối đỉnh),

∠H1 = ∠A1(so le trong)

ΔDIH = ΔKIA (g.c.g)

⇒ ID = IK

Tứ giác ADHK có ID = IK, IA = IH (cmt) ⇒ DHK là hình bình hành

⇒ HK // DA mà DA ⊥ AC ⇒ HK ⊥ AC

1: Xét tứ giác ADME co

góc ADM=góc AEM=góc DAE=90 độ

nên ADME là hình chữ nhật

Xét ΔABC có

DM//AC

nên DM/AC=BD/BA=BM/BC

=>D là trung điểm của BA

Xét ΔABC có ME//AB

nên ME/AB=CM/CB=CE/CA=1/2

=>E là trung điểm của AC

=>EM//BD và EM=BD

=>BMED là hình bình hành

Xét tứ giác DMCE có

DM//CE

DM=CE

Do đó: DMCE là hình bình hành

2: \(AC=\sqrt{10^2-6^2}=8\left(cm\right)\)

AD=AB/2=3cm

AE=AC/2=4cm

\(S_{ADME}=3\cdot4=12\left(cm^2\right)\)

3: ΔHAC vuông tại H

mà HE là trung tuyến

nên HE=AC/2=MD

Xét ΔABC có AD/AB=AE/AC

nên DE//BC

Xét tứ giác DHME có

DE//MH

MD=HE

Do đo: DHME là hình thang cân

16 tháng 12 2016

A B C M D E H K

11 tháng 2 2017

mk ko biết

8 tháng 11 2018

a)xét tứ giác ADME có

CÂB =AÊM=góc ADM=900

=>ADME là hcn

b)vì MA là đg trung tuyến nên MA=MC=MB

xét tam giác CMA có

CM=MA(cmt)

CÊM=AÊM=900

EM là cạnh chung

=>...(cạnh huyền-cạnh góc vuông)

=>CE=EA

mà EA=MD(EAMD là hcn) nên CE=MD (1)

ta có MA=MC(cmt)

mà MA=ED(EAMD là hcn)

=>MC=ED (2)

xét tứ giác CMDE có CE=MD,CM=ED( 1 và 2)

=>CMED là hbh

c)

xét tam giác MDB vuông tại D có DI là trung tuyến nên MI=IB=ID

xét tứ giác MKDI có

KM=KD(K là giao điểm hai dg chéo của hcn)

KM=MI(vì MA=MB mà K và I lần lượt là trung điểm của chúng)

MI=ID(cmt)

=>KMID là thoi

mà KI là đg chéo của góc I nên KI cũng là p/g của góc I

(ck hk tốt nhé)