K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 12 2024

Cấu Trúc Cơ Bản Của Tế Bào

Tế bào là đơn vị cơ bản của sự sống và có cấu tạo phức tạp với nhiều thành phần đặc trưng, mỗi thành phần đảm nhiệm một vai trò quan trọng. Dưới đây là mô tả chi tiết về các cấu trúc chính của tế bào và chức năng của chúng:

  • Màng tế bào: Là lớp vỏ bao quanh tế bào, màng tế bào có tính chọn lọc, kiểm soát sự di chuyển của các chất vào và ra khỏi tế bào. Màng tế bào chứa các phân tử lipid và protein, tạo nên một cấu trúc linh hoạt và bền vững.
  • Hạt nhân: Nằm ở trung tâm tế bào, hạt nhân chứa DNA, chất mang thông tin di truyền quan trọng, điều chỉnh hoạt động của tế bào và xác định các đặc điểm di truyền.
  • Chất tế bào (cytoplasm): Là dung dịch gel bên trong màng tế bào, chứa các bào quan và các phân tử cần thiết cho quá trình chuyển hóa năng lượng, tổng hợp protein và nhiều hoạt động sống khác.
  • Bộ máy Golgi: Là hệ thống túi và màng, giúp điều hòa và vận chuyển protein và lipid đến các vị trí cần thiết trong tế bào hoặc ra ngoài tế bào.
  • Lưới nội chất (endoplasmic reticulum): Gồm hai loại chính:
    • Lưới nội chất hạt: Chứa ribosome và là nơi tổng hợp protein.
    • Lưới nội chất trơn: Tham gia vào tổng hợp lipid và giải độc tế bào.
  • Ti thể (mitochondria): Được mệnh danh là "nhà máy năng lượng" của tế bào, ti thể sản xuất ATP qua quá trình hô hấp tế bào, cung cấp năng lượng cho mọi hoạt động sống.
  • Ribosome: Là nơi tổng hợp protein theo mã di truyền từ mRNA. Ribosome có thể tự do trong cytoplasm hoặc gắn trên lưới nội chất hạt.
  • Peroxisome: Thực hiện quá trình phân hủy các chất độc hại và chuyển hóa lipid.
  • Không bào (vacuole): Chủ yếu có ở tế bào thực vật, không bào chứa nước và các chất dinh dưỡng, giúp duy trì áp suất và hình dạng tế bào.

Các thành phần này phối hợp với nhau, đảm bảo tế bào thực hiện được các chức năng cần thiết cho sự sống, bao gồm duy trì hình dạng, chuyển hóa chất và truyền tín hiệu giữa các tế bào.

29 tháng 11 2019

Ta có: \(\frac{x^2y+2xy^2+y^3}{2x^2+xy-y^2}\)

\(=\frac{x^2y+xy^2+xy^2+y^3}{2x^2+2xy-xy-y^2}\)

\(=\frac{xy\left(x+y\right)+y^2\left(x+y\right)}{2x\left(x+y\right)-y\left(x+y\right)}\)

\(=\frac{\left(x+y\right)\left(xy+y^2\right)}{\left(2x-y\right)\left(x+y\right)}=\frac{xy+y^2}{2x-y}\left(đpcm\right)\)

29 tháng 11 2019

Ta có: \(\frac{x^2+3xy+2y^2}{x^3+2x^2y-xy^2-2y^3}\)

\(=\frac{x^2+xy+2xy+2y^2}{x^2\left(x+2y\right)-y^2\left(x+2y\right)}\)

\(=\frac{x\left(x+y\right)+2y\left(x+y\right)}{\left(x^2-y^2\right)\left(x+2y\right)}\)

\(=\frac{\left(x+2y\right)\left(x+y\right)}{\left(x+y\right)\left(x-y\right)\left(x+2y\right)}=\frac{1}{x-y}\left(đpcm\right)\)

17 tháng 1 2021

1) a) \(\frac{x}{x+1}+\frac{x^3-2x^2}{x^3+1}=\frac{x}{x+1}+\frac{x^3-2x^2}{\left(x+1\right)\left(x^2-x+1\right)}\)

\(=\frac{x\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}+\frac{x^3-2x^2}{\left(x+1\right)\left(x^2-x+1\right)}=\frac{x^3-x^2+x+x^3-2x^2}{\left(x+1\right)\left(x^2-x+1\right)}\)

\(=\frac{2x^3-3x^2+x}{\left(x+1\right)\left(x^2-x+1\right)}=\frac{x\left(x-1\right)\left(2x-1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\)

b) \(\frac{x+1}{2x-2}+\frac{3}{x^2-1}+\frac{x+3}{2x+2}=\frac{x+1}{2\left(x-1\right)}+\frac{3}{\left(x-1\right)\left(x+1\right)}+\frac{x+3}{2\left(x+1\right)}\)

\(=\frac{\left(x+1\right)^2}{2\left(x-1\right)\left(x+1\right)}+\frac{6}{2\left(x-1\right)\left(x+1\right)}+\frac{\left(x+3\right)\left(x-1\right)}{2\left(x+1\right)\left(x-1\right)}\)

\(=\frac{\left(x+1\right)^2+6+\left(x+3\right)\left(x-1\right)}{2\left(x-1\right)\left(x+1\right)}=\frac{x^2+2x+1+6+x^2+2x-3}{2\left(x-1\right)\left(x+1\right)}\)

\(=\frac{2x^2+4x+2}{2\left(x-1\right)\left(x+1\right)}=\frac{2\left(x+1\right)^2}{2\left(x-1\right)\left(x+1\right)}=\frac{x+1}{x-1}\)

2) Ta có A = \(\left(\frac{x^2+y^2}{x^2-y^2}-1\right).\frac{x-y}{4y}=\frac{2y^2}{x^2-y^2}.\frac{x-y}{4y}=\frac{2y^2\left(x-y\right)}{\left(x-y\right)\left(x+y\right).4y}=\frac{y}{2\left(x+y\right)}\)

Thay x = 14 ; y = -15 vào biểu thức ta được 

\(A=\frac{y}{2\left(x+y\right)}=\frac{-15}{2\left(14-15\right)}=\frac{-15}{-2}=7,5\)

8 tháng 11 2018

Bài 2

\(a,x^3+2x^2+x\)

\(=x.\left(x^2+2x+1\right)\)

\(b,xy+y^2-x-y\)

\(=y.\left(x+y\right)-\left(x+y\right)\)

\(=\left(y-1\right).\left(x+y\right)\)

bài 3

\(a,3x.\left(x^2-4\right)=0\)

\(\Rightarrow\orbr{\begin{cases}3x=0\\x^2=4\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=0\\x=2,x=-2\end{cases}}\)

vậy x=0,x=2 hay x=-2

\(b,xy+y^2-x-y=0\)

\(y.\left(x+y\right)-\left(x+y\right)=0\)

\(\left(y-1\right).\left(x+y\right)=0\)

\(\Rightarrow\orbr{\begin{cases}y-1=0\\x+y=0\end{cases}\Rightarrow\orbr{\begin{cases}y=1\\x=-1\end{cases}}}\)

vậy x=-1, y=1

22 tháng 3 2020

.các bác giúp em với ạ,em cảm ơn trc ạ

22 tháng 3 2020

bài 1 :

1, 

a, x^2 - xy = x(x - y)

b, x^2 + 2xy + y^2 - 4

= (x + y)^2 - 2^2

= (x + y + 2)(x + y - 2)

2,

(2x-1)(2x+1)+4x(1-x)

= 4x^2 - 1 + 4x - 4x^2

= 4x - 1

3,  x^2 - 6x + 5 = 0

<=> x^2 - x - 5x + 5 = 0

<=> x(x - 1) - 5(x - 1) = 0

<=> (x - 5)(x - 1) = 0

<=> x = 5 hoặc x = 1

25 tháng 10 2018

Bài1: Phân tích các đa thức sau thành nhân tử

a)36-4x2+4xy-y2

\(=6^2-\left(4x^2-4xy+y^2\right)\)

\(=6^2-\left(2x-y\right)^2\)

\(=\left(6+2x-y\right)\left(6-2x+y\right)\)

b)2x4+3x2-5

\(=2x^4-2x^2+5x^2-5\)

\(=2x^2\left(x^2-1\right)+5\left(x^2-1\right)\)

\(=\left(2x^2+5\right)\left(x^2-1\right)\)

\(=\left(2x^2+5\right)\left(x-1\right)\left(x+1\right)\)

25 tháng 10 2018

B1:a)\(36-4x^2+4xy-y^2=36-\left(4x^2-4xy+y^2\right)=6^2-\left(2x-y\right)^2\)

\(=\left(6-2x+y\right)\left(6+2x-y\right)\)

c)\(a^3-ab^2+a^2+b^2-2ab=a\left(a^2-b^2\right)+\left(a-b\right)^2\)\(=a\left(a-b\right)\left(a+b\right)+\left(a-b\right)^2=\left(a-b\right)\left(a^2+ab+a-b\right)\)

d)\(x^2-\left(a^2+b^2\right)x+a^2b^2=x^2-a^2x-b^2x+a^2b^2\)\(=x\left(x-a^2\right)-b^2\left(x-a^2\right)=\left(x-a^2\right)\left(x-b^2\right)\)

e)\(x\left(x-y\right)+x^2-y^2=x\left(x-y\right)+\left(x-y\right)\left(x+y\right)\)\(=\left(x-y\right)\left(x+x+y\right)=\left(x-y\right)\left(2x+y\right)\)

20 tháng 12 2018

a) (x-1)^2/x-1 + (x+1)^2/x+1 - 3

= x-1 + x+1 - 3

= 2x - 3

b) Tahy x=2 vào A ta có:

A = 2 . 2 - 3 = 1

Vậy..............

28 tháng 12 2021

Answer:

\(A=\frac{x^2-2x+1}{x-1}+\frac{x^2+2x+1}{x+1}-3\)

\(ĐKXĐ:x\ne\pm1\)

\(A=\frac{\left(x-1\right)^2}{x-1}+\frac{\left(x+1\right)^2}{x+1}-3\)

\(=x-1+x+1-3\)

\(=2x-3\)

Thay vào ta được:

\(2.2-3\)

\(=4-3\)

\(=1\)

20 tháng 12 2018

a)\(ĐKXĐ:x=\pm1\)

\(A=\frac{x^2-2x+1}{x-1}+\frac{x^2+2x+1}{x+1}-3\)

\(=\frac{\left(x-1\right)^2}{x-1}+\frac{\left(x+1\right)^2}{x-1}-3\)

\(=x-1+x+1-3\)

\(=2x-3\)

b,Để A=2 thì

2x-3=2

<=>2x=5

<=>x=5/2(t/m ĐKXĐ)

26 tháng 7 2016

a. \(P=x^2-2x+5=x^2-2x+1+4=\left(x-1\right)^2+4\)

vì \(\left(x-1\right)^2\ge0\) với mọi x

=> (x-1)^2 +4 \(\ge\) vợi mọi x

Pmin=4 <=> x-1=0 <=>x=1

 

 

26 tháng 7 2016

1.

b)\(M=\left(x^2-x+\frac{1}{4}\right)+\left(y^2+6y+9\right)+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Dấu = xảy ra \(\Leftrightarrow x-\frac{1}{2}=0\) và \(y+3=0\)

\(\Leftrightarrow x=\frac{1}{2}\) và \(y=-3\)

Vậy GTNN của M là \(\frac{3}{4}\Leftrightarrow x=\frac{1}{2}\)và \(y=-3\)