Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 4.(1+4)+43.(1+4)+................+459(1+4)
=5.4+5.43+...+5.459
=5.(4+43+.+459) chia hết cho 5
4.(1+4+42)+44.(1+4+42)+...............+458(1+4+42)
=21.4+44.21+..+21.458
=21.(4+44+.+458) chia hết cho 21
b) 5.(1+5)+53(1+5)+.+59(1+5)
=6.(5+53+.............+59) chia hết cho 6
a) Đặt biểu thức trên là A, ta có:
A = 4 + 42 + 43 + 44 + ... + 460
=> A = (4 + 42) + (43 + 44) + ... + (459 + 460)
=> A = 4(1 + 4) + 43(1 + 4) + ... + 459(1 + 4)
=> A = 4 . 5 + 43 . 5 + ... + 459 . 5
=> A = 5(4 + 43 + ... + 459)
=> A ⋮ 5
A = 4 + 42 + 43 + 44 + ... + 460
=> A = (4 + 42 + 43) + (44 + 45 + 46) + ... + (458 + 459 + 460)
=> A = 4(1 + 4 + 42) + 44(1 + 4 + 42) + ... + 458(1 + 4 + 42)
=> A = 4 . 21 + 44 . 21 + ... + 458 . 21
=> A = 21(4 + 44 + ... + 458)
=> A ⋮ 21
b) Đặt biểu thức trên là B, ta có:
B = 5 + 52 + 53 + 54 + ... + 510
=> B = (5 + 52) + (53 + 54) + ... + (59 + 510)
=> B = 5(1 + 5) + 53(1 + 5) + ... + 59(1 + 5)
=> B = 5 . 6 + 53 . 6 + ... + 59 . 6
=> B = 6(5 + 53 + ... + 59)
=> B ⋮ 6
A=5+5^2+5^3+...+5^2013
A=(5+5^2+5^3)+(5^4+5^5+5^6)+...+(5^2011+2^2012+5^2013)
A=155+5^4*(5+5^2+5^3)+...+5^2011*(5+5^2+5^3)
A=155+5^4*155+...+5^2011*155
A=155*(5^4+...+5^2011) chia hết cho 155
tk mk nha
thanks
a,=7^4(7^2+7-1)
=7^4.55 vậy nó chia hết cho 55
b,16^5=2^20
2^15(2^5+1)
2^15.33 chia hết cho 33
các câu c,d cũng tương tự
a, 4 + \(4^2\) + \(4^3\) + ... + \(4^{60}\) chia hết cho 5
= ( 4 + \(4^2\) ) + ( \(4^3\) + \(4^4\) ) +... + ( \(4^{59}\) + \(4^{60}\))
= ( 4 + \(4^2\) ) + \(4^3\) . ( 4 + \(4^2\) ) +... + \(4^{59}\). ( 4 + \(4^2\) )
= 20 + \(4^3\) . 20 + ... + \(4^{59}\) . 20
= 20 . ( 1 + \(4^3\) + ... + \(4^{59}\) ) chia hết cho 5
4 + \(4^2\) + \(4^3\) + ... + \(4^{60}\) chia hết cho 21
= ( 4 + \(4^2\) + \(4^3\) ) + ( \(4^4\) + \(4^5\) + \(4^6\) ) + ... + ( \(4^{58}\)+ \(4^{59}\) + \(4^{60}\) )
= ( 4 + \(4^2\) + \(4^3\) ) + \(4^4\) . ( 4 + \(4^2\) + \(4^3\) ) + ... + \(4^{58}\) . ( 4 + \(4^2\) + \(4^3\) )
= 84 + \(4^4\) . 84 + .... + \(4^{58}\) . 84
= 84 . ( 1 + \(4^4\) + ... + \(4^{58}\) ) chia hết cho 21
b, 5 + \(5^2\) + \(5^3\) + ... + \(5^{10}\) chia hết cho 6
= ( 5 + \(5^2\) ) + ( \(5^3\) + \(5^4\) ) + ... + ( \(5^9\) + \(5^{10}\) )
= ( 5 + \(5^2\) ) + \(5^3\) . ( 5 + \(5^2\) ) + ... + \(5^9\) . ( 5 + \(5^2\) )
= 30 + \(5^3\) . 30 + ... + \(5^9\) . 30
= 30 . ( 1 + \(5^3\) + ... + \(5^9\) ) chia hết cho 6
ta co:
=(5+5^2+5^3)+(5^4+5^5+5^6)+.........+(5^2011+5^2012+5^2013)
=155+5^4*(5+5^2+5^3)+........+5^2011*(5+5^2+5^3)
=155+5^4*155+5^2011*155
=155*(5^4+5^2011+1)
vì 155 chia hết cho 155=>155*(5^4+5^2011+1) chia hết cho 155
vậy A chia hết cho 155
A = 1 + 4 + 4^2 + 4^3 + ...+ 4^59 ( có 60 số hạng)
A = (1+4+4^2) + (4^3+4^4+4^5) + ...+ (4^57+4^58 + 4^59) ( có 20 cặp số hạng)
A = 21 + 4^3.(1+4+4^2) + ....+ 4^57.(1+4+4^2)
A= 21 + 4^3.21 + ...+ 4^57.21
A = 21.(1+4^3+...+4^57) chia hết cho 21
phần b đề là j z bn
Ta có : A = (51+52+53)+(54+55+56)+...+(528+529530)
A = 155 + 53.(51+52+53)+...+527.(51+52+53)
A = 155 + 53. 155+...+527.155
A = 155.(1+53+...+527) chia hết cho 155
Vậy A chia hết cho 155
(5+52+53)+(54+55+56)+...+(528+529+530)
= 155 +53(5+52+53)+...+527(5+52+53)
=155+53.155+...+527.155
=155(1+53+..+527) chia hết cho 155
5+5^2+5^3+...+5^21
=5^1+5^2+5^3+...+5^21
Tổng số hạng:(21-1)+1+21(số hạng)
được chia thành:21:3=7(bộ 3 số)
(5+5^2+5^3)+...+(5^19+5^20+5^21)
=(5+25+125)+...+5^18.(5+5^2+5^3)
=155+...+5^18.(5+25+125)
=155.1+...+5^18.155
=155.(1+...+5^18)
Vì 155 chia hết cho 155 nên 155.(1+...+5^18) chia hết cho 155
-Hết-