Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=4x2+4xy+y2+x2-6x-2y+1
=(2x+y)2-4x-2y+1+x2-2x+1-1
=[(2x+y)2-2(2x+y)+1]+(x-1)2-1
=(2x+y+1)2+(x-1)2-1
ta có: (2x+y+1)2\(\ge0\)với\(\forall\)x
(x-1)2\(\ge0\)với \(\forall\)x
\(\Rightarrow\left(2x+y+1\right)^2+\left(x+1\right)^2\ge0\forall x\)
\(\Rightarrow\left(2x+y+1\right)^2+\left(x+1\right)^2-1\ge-1\forall x\)
\(\Rightarrow N\ge-1\)
Dấu '=' xảy ra\(\Leftrightarrow\hept{\begin{cases}\left(2x+y+1\right)^2=0\\\left(x-1\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=-3\end{cases}}}\)
vậy N đạt GTNN là -1 khi và chỉ khi x=1;y=-3
a) Ta có: \(P=5x^2+4xy-6x+y^2+2030\)
\(=\left(4x^2+4xy+y^2\right)+\left(x^2-6x+9\right)+2021\)
\(=\left(2x+y\right)^2+\left(x-3\right)^2+2021\ge2021\forall x,y\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x-3=0\\y+2x=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=-2x=-6\end{matrix}\right.\)
b) Ta có: \(a^5-5a^3+4a\)
\(=a\left(a^4-5a^2+4\right)\)
\(=a\left(a^2-4\right)\left(a^2-1\right)\)
\(=\left(a-2\right)\left(a-1\right)\cdot a\cdot\left(a+1\right)\left(a+2\right)\)
Vì a-2;a-1;a;a+1;a+2 là tích của 5 số nguyên liên tiếp
nên \(\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)⋮5!\)
hay \(a^5-5a^3+4a⋮120\)
\(D=2023-8x+2y+4xy-y^2-5x^2\)
\(=-\left(y^2+5x^2-4xy-2y+8x-2023\right)\)
\(=-\left(y^2-2.y.\left(2x+1\right)+\left(2x+1\right)^2-\left(2x+1\right)^2+5x^2+8x-2023\right)\)
\(=-\left[\left(y-2x-1\right)^2-4x^2-4x-1+5x^2+8x-2023\right]\)
\(=-\left[\left(y-2x-1\right)^2+x^2+4x-2024\right]\)
\(=-\left[\left(y-2x-1\right)^2+\left(x+2\right)^2\right]+2028\)
Vì \(-\left[\left(y-2x-1\right)^2+\left(x+2\right)^2\right]\le0\forall x,y\)
\(MaxD=2028\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=-3\end{matrix}\right.\)
\(C=-\left(x^2+4x+4\right)-\left(y^2-8y+16\right)+22\\ =-\left(x^2+2x.2+2^2\right)-\left(y^2-2.y.4+4^2\right)+22\\ =-\left(x+2\right)^2-\left(y-4\right)^2+22\\ Vậy:max_C=22.khi.x=-2.và.y=4\)
a) Từ M = x − 3 2 2 + 31 4 ≥ 31 4 ⇒ M min = 31 4 ⇔ x = 3 2 .
b) Ta có N = ( x + 2 y ) 2 + ( y – 2 ) 2 + ( x + 4 ) 2 – 120 ≥ - 120 .
Tìm được N min = -120 Û x = -4 và y = 2.
\(N=x^2+5y^2-4xy+6x-14y+15=x^2-4xy+4y^2+6x-12y+9+y^2-2y+1+5\)
\(=\left(x^2-4xy+4y^2\right)+\left(6x-12y\right)+9+\left(y^2-2y+1\right)+5\)
\(=\left[x^2-2.x.2y+\left(2y\right)^2\right]+6\left(x-2y\right)+9+\left(y^2-2.y.1+1^2\right)+5\)
\(=\left(x-2y\right)^2+6\left(x-2y\right)+9+\left(y-1\right)^2+5\)
\(=\left[\left(x-2y\right)^2+6\left(x-2y\right)+9\right]+\left(y-1\right)^2+5\)
\(=\left[\left(x-2y\right)^2+2.\left(x-2y\right).3+3^2\right]+\left(y-1\right)^2+5=\left(x-2y+3\right)^2+\left(y-1\right)^2+5\ge5\)
\(\Rightarrow GTNN\)của biểu thức N là 5.
Dấu\("="\)xảy ra\(\Leftrightarrow x-2y+3=0\)và\(y-1=0\Leftrightarrow x-2y=-3\)và\(y=1\).
\(\Leftrightarrow x-2.1=-3\)và\(y=1\Leftrightarrow x=-3+2=-1\)và\(y=1\).
Vậy\(GTNN\)của biểu thức N là 5 tại\(x=-1\)và\(y=1\).
\(N = x^2+5y^2-4xy+6x-14y+15\)
\(N= [ ( x^2 - 4xy + 4y^2) + ( 6x - 12y) + 9 ]\)\(+ ( y^2 - 2y + 1 ) + 5\)\(N = [( x - 2y )^2 + 6( x - 2y ) + 9 ] + \)\(( y - 1 )^2 + 5\)\(N = ( x - 2y + 3 )^2 + ( y - 1 )^2 +5\)\(\ge\)\(5\)
\(Dấu " = " xảy ra \)\(\Leftrightarrow\)\(x - 2y + 3 = 0 \) \(và \) \(y - 1 = 0\)
\(\Rightarrow\)\(x - 2y + 3 = 0 \) \(và\) \(y = 1\)
\(\Rightarrow\)\(x = - 1\) \(và \) \(y = 1\)
\(Min N = 5 \)\(\Leftrightarrow\)\(x = - 1\) \(và \) \(y = 1\)
Biểu thức có thể được viết lại như sau:
[ P = 5x^2 + 4xy - 6x + y^2 + 2030 ]
Ta nhóm các hạng tử liên quan đến ( x ) và ( y ):
[ P = 5x^2 + 4xy + y^2 - 6x + 2030 ]
Tiếp theo, ta hoàn chỉnh bình phương:
[ P = (2x + y)^2 + (x - 3)^2 + 2021 ]
Vì ( (2x + y)^2 \geq 0 ) và ( (x - 3)^2 \geq 0 ) với mọi giá trị của ( x ) và ( y ), nên:
[ P \geq 2021 ]
Dấu “=” xảy ra khi ( (2x + y)^2 = 0 ) và ( (x - 3)^2 = 0 ), tức là:
[ 2x + y = 0 ] [ x - 3 = 0 ]
Giải hệ phương trình này, ta được:
[ x = 3 ] [ y = -6 ]
Vậy giá trị nhỏ nhất của biểu thức ( P ) là ( 2021 ) khi ( x = 3 ) và ( y = -6 )