Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x^3y+xy^3+xy\right):y\left(x^2+y^2+1\right).\)
\(=xy.\left(x^2+y^2+1\right):y.\left(x^2+y^{2+}1\right)\)
\(=\left(xy:y\right).\left(x^2+y^2+1\right)^2\)
\(=x.\left(x^2+y^2+1\right)^2\)
Bài 3:
3: \(6x\left(x-y\right)-9y^2+9xy\)
\(=6x\left(x-y\right)+9xy-9y^2\)
\(=6x\left(x-y\right)+9y\left(x-y\right)\)
\(=\left(x-y\right)\left(6x+9y\right)\)
\(=3\left(2x+3y\right)\left(x-y\right)\)
Bài 4:
Bài 1:
\(3a.\left(2a^2-ab\right)=6a^3-3a^2b\)
\(\left(4-7b^2\right).\left(2a+5b\right)=8a+20b-14ab^2-35b^3\)
Bài 2:
\(2x^2-6x+xy-3y=2x.\left(x-3\right)+y.\left(x-3\right)=\left(x-3\right).\left(2x+y\right)\)
Bài 3: Tại x = 3/2, y =1/3 thì Q = 67/9
Bài 4:
\(\left(\frac{1}{x+1}+\frac{2x}{1-x^2}\right).\left(\frac{1}{x-1}\right)\) \(\frac{1}{\left(x+1\right).\left(x-1\right)}+\frac{2x}{\left(1-x^2\right).\left(x-1\right)}=\frac{x-1}{\left(x+1\right).\left(x-1\right)^2}+\frac{-2x}{\left(x-1\right)^2.\left(x+1\right)}\)
= \(\frac{x-1-2x}{\left(x+1\right).\left(x-1\right)^2}=\frac{-\left(x+1\right)}{\left(x+1\right).\left(x-1\right)^2}=\frac{-1}{\left(x-1\right)^2}\)
a) \(\frac{x-1}{x^2-1}-\frac{x+1}{x^2+x}=\frac{x-1}{\left(x-1\right)\left(x+1\right)}-\frac{x+1}{x\left(x+1\right)}\)
\(=\frac{1}{x+1}-\frac{1}{x}\)
\(=\frac{x}{x\left(x+1\right)}-\frac{x+1}{x\left(x+1\right)}\)
\(=\frac{x-x-1}{x\left(x+1\right)}=\frac{-1}{x\left(x+1\right)}\)
b) \(\frac{2x+2y}{y-x}-\frac{x^2+xy}{3x^2-3y^2}=\frac{-2x-2y}{x-y}-\frac{x\left(x+y\right)}{3\left(x^2-y^2\right)}\)
\(=\frac{-2x-2y}{x-y}-\frac{x\left(x+y\right)}{3\left(x-y\right)\left(x+y\right)}\)
\(=\frac{-2x-2y}{x-y}-\frac{x}{3\left(x-y\right)}\)
\(=\frac{3\left(-2x-2y\right)}{3\left(x-y\right)}-\frac{x}{3\left(x-y\right)}\)
\(=\frac{-6x-6y}{3\left(x-y\right)}-\frac{x}{3\left(x-y\right)}\)
\(=\frac{-7x-6y}{3\left(x-y\right)}\)
a, \(\frac{x-1}{x^2-1}-\frac{x+1}{x^2+x}=\frac{x-1}{\left(x-1\right)\left(x+1\right)}-\frac{x+1}{x\left(x+1\right)}\)
\(=\frac{x\left(x-1\right)}{x\left(x-1\right)\left(x+1\right)}-\frac{\left(x+1\right)\left(x-1\right)}{x\left(x-1\right)\left(x+1\right)}=\frac{x^2-x-x^2+1}{x\left(x-1\right)\left(x+1\right)}\)
\(=\frac{-x+1}{x\left(x-1\right)\left(x+1\right)}=\frac{-\left(x-1\right)}{x\left(x-1\right)\left(x+1\right)}=\frac{-1}{x\left(x+1\right)}\)
b, \(\frac{2x+2y}{y-x}-\frac{x^2+xy}{3x^3-3y^2}=-\frac{2x+2y}{x-y}-\frac{x^2+xy}{3x\left(x^2-y^2\right)}\)
\(=-\frac{2x+2y}{x-y}-\frac{x^2+xy}{3x\left(x-y\right)\left(x+y\right)}\)
\(=-\frac{6x\left(x+y\right)^2}{3x\left(x-y\right)\left(x+y\right)}-\frac{x^2+xy}{3x\left(x-y\right)\left(x+y\right)}\)
\(=-\frac{6x\left(x^2+2xy+y^2\right)}{3x\left(x-y\right)\left(x+y\right)}-\frac{x^2+xy}{3x\left(x-y\right)\left(x+y\right)}\)
\(=\frac{-12x^3-12x^2y-6xy^2-x^2-xy}{3x\left(x-y\right)\left(x+y\right)}\)
check hộ ý b nhá :))
Ta có:(x2-y2)\(.\dfrac{x^2+y^2}{y^4-x^2y^2}\)\(=\left(x^2-y^2\right).\dfrac{x^2+y^2}{y^2\left(y^2-x^2\right)}=-\dfrac{x^2+y^2}{y^2}\)
Ta có:\(\dfrac{4x^2-9y^2}{xy}:\left(2x-3y\right)=\dfrac{\left(2x-3y\right)\left(2x+3y\right)}{xy}.\dfrac{1}{\left(2x-3y\right)}=\dfrac{2x+3y}{xy}\)
a) \(\frac{x-1}{x+1}-\frac{x+1}{x-1}+\frac{4}{x^2-1}\left(ĐK:x\ne\pm1\right)\)
\(=\frac{\left(x-1\right)^2-\left(x+1\right)^2+4}{\left(x-1\right)\left(x+1\right)}\)
\(\frac{x^2-2x+1-x^2-2x-1+4}{\left(x-1\right)\left(x+1\right)}\)
\(=\frac{-4x+4}{\left(x-1\right)\left(x+1\right)}=\frac{-4\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}=-\frac{4}{x+1}\)
b) \(\frac{x^3y+xy^3}{x^4y}:\left(x^2+y^2\right)\left(ĐK:x,y\ne0\right)\)
\(=\frac{xy\left(x^2+y^2\right)}{x^4y}\cdot\frac{1}{x^2+y^2}\)
\(=\frac{1}{x^3}\)
( x - 2)(xy - 3y +1)
(x2y - 3xy+x)-(2xy - 6y +2)
x2y - 3xy +x - 2xy + 6y - 2
x2y +(-3xy - 2xy)+x + 6y - 2
x2y - 5xy + x + 6y - 2
\(\left(x-2\right)\left(xy-3y+1\right)=x\left(xy-3y+1\right)-2\left(xy-3y+1\right)\)
\(=x^2y-3xy+x-\left(2xy-6y+2\right)\)
\(=x^2y-5xy+x+6y+2\)