K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 9 2024

( x - 2)(xy - 3y +1)

(x2y - 3xy+x)-(2xy - 6y +2)

x2y - 3xy +x - 2xy + 6y - 2

x2y +(-3xy - 2xy)+x + 6y - 2

x2y - 5xy + x + 6y - 2

NV
30 tháng 9 2024

\(\left(x-2\right)\left(xy-3y+1\right)=x\left(xy-3y+1\right)-2\left(xy-3y+1\right)\)

\(=x^2y-3xy+x-\left(2xy-6y+2\right)\)

\(=x^2y-5xy+x+6y+2\)

25 tháng 9 2017

\(\left(x^3y+xy^3+xy\right):y\left(x^2+y^2+1\right).\)

\(=xy.\left(x^2+y^2+1\right):y.\left(x^2+y^{2+}1\right)\)

\(=\left(xy:y\right).\left(x^2+y^2+1\right)^2\)

\(=x.\left(x^2+y^2+1\right)^2\)

25 tháng 9 2017

\(=\frac{\left[xy\left(x^2+y^2+1\right)\right]}{y.\left(x^2+y^2+1\right)}\)

\(=x\)

4 tháng 12 2018

Sao ảnh đại diện của bạn giống mình thế?

Bài 3:

3: \(6x\left(x-y\right)-9y^2+9xy\)

\(=6x\left(x-y\right)+9xy-9y^2\)

\(=6x\left(x-y\right)+9y\left(x-y\right)\)

\(=\left(x-y\right)\left(6x+9y\right)\)

\(=3\left(2x+3y\right)\left(x-y\right)\)

Bài 4:

loading...

loading...

loading...

30 tháng 12 2017

Bài 1:

\(3a.\left(2a^2-ab\right)=6a^3-3a^2b\)

\(\left(4-7b^2\right).\left(2a+5b\right)=8a+20b-14ab^2-35b^3\)

Bài 2:

\(2x^2-6x+xy-3y=2x.\left(x-3\right)+y.\left(x-3\right)=\left(x-3\right).\left(2x+y\right)\)

Bài 3: Tại x = 3/2, y =1/3 thì Q = 67/9

Bài 4:

 \(\left(\frac{1}{x+1}+\frac{2x}{1-x^2}\right).\left(\frac{1}{x-1}\right)\) \(\frac{1}{\left(x+1\right).\left(x-1\right)}+\frac{2x}{\left(1-x^2\right).\left(x-1\right)}=\frac{x-1}{\left(x+1\right).\left(x-1\right)^2}+\frac{-2x}{\left(x-1\right)^2.\left(x+1\right)}\)  

\(\frac{x-1-2x}{\left(x+1\right).\left(x-1\right)^2}=\frac{-\left(x+1\right)}{\left(x+1\right).\left(x-1\right)^2}=\frac{-1}{\left(x-1\right)^2}\)

16 tháng 12 2020

a) \(\frac{x-1}{x^2-1}-\frac{x+1}{x^2+x}=\frac{x-1}{\left(x-1\right)\left(x+1\right)}-\frac{x+1}{x\left(x+1\right)}\)

\(=\frac{1}{x+1}-\frac{1}{x}\)

\(=\frac{x}{x\left(x+1\right)}-\frac{x+1}{x\left(x+1\right)}\)

\(=\frac{x-x-1}{x\left(x+1\right)}=\frac{-1}{x\left(x+1\right)}\)

b) \(\frac{2x+2y}{y-x}-\frac{x^2+xy}{3x^2-3y^2}=\frac{-2x-2y}{x-y}-\frac{x\left(x+y\right)}{3\left(x^2-y^2\right)}\)

\(=\frac{-2x-2y}{x-y}-\frac{x\left(x+y\right)}{3\left(x-y\right)\left(x+y\right)}\)

\(=\frac{-2x-2y}{x-y}-\frac{x}{3\left(x-y\right)}\)

\(=\frac{3\left(-2x-2y\right)}{3\left(x-y\right)}-\frac{x}{3\left(x-y\right)}\)

\(=\frac{-6x-6y}{3\left(x-y\right)}-\frac{x}{3\left(x-y\right)}\)

\(=\frac{-7x-6y}{3\left(x-y\right)}\)

16 tháng 12 2020

a, \(\frac{x-1}{x^2-1}-\frac{x+1}{x^2+x}=\frac{x-1}{\left(x-1\right)\left(x+1\right)}-\frac{x+1}{x\left(x+1\right)}\)

\(=\frac{x\left(x-1\right)}{x\left(x-1\right)\left(x+1\right)}-\frac{\left(x+1\right)\left(x-1\right)}{x\left(x-1\right)\left(x+1\right)}=\frac{x^2-x-x^2+1}{x\left(x-1\right)\left(x+1\right)}\)

\(=\frac{-x+1}{x\left(x-1\right)\left(x+1\right)}=\frac{-\left(x-1\right)}{x\left(x-1\right)\left(x+1\right)}=\frac{-1}{x\left(x+1\right)}\)

b, \(\frac{2x+2y}{y-x}-\frac{x^2+xy}{3x^3-3y^2}=-\frac{2x+2y}{x-y}-\frac{x^2+xy}{3x\left(x^2-y^2\right)}\)

\(=-\frac{2x+2y}{x-y}-\frac{x^2+xy}{3x\left(x-y\right)\left(x+y\right)}\)

\(=-\frac{6x\left(x+y\right)^2}{3x\left(x-y\right)\left(x+y\right)}-\frac{x^2+xy}{3x\left(x-y\right)\left(x+y\right)}\)

\(=-\frac{6x\left(x^2+2xy+y^2\right)}{3x\left(x-y\right)\left(x+y\right)}-\frac{x^2+xy}{3x\left(x-y\right)\left(x+y\right)}\)

\(=\frac{-12x^3-12x^2y-6xy^2-x^2-xy}{3x\left(x-y\right)\left(x+y\right)}\)

check hộ ý b nhá :)) 

19 tháng 6 2018

mình ghi bị nhầm bài rồi

5 tháng 8 2021

vậy bạn ghi lại bài đúng đi

29 tháng 7 2021

Ta có:(x2-y2)\(.\dfrac{x^2+y^2}{y^4-x^2y^2}\)\(=\left(x^2-y^2\right).\dfrac{x^2+y^2}{y^2\left(y^2-x^2\right)}=-\dfrac{x^2+y^2}{y^2}\)

Ta có:\(\dfrac{4x^2-9y^2}{xy}:\left(2x-3y\right)=\dfrac{\left(2x-3y\right)\left(2x+3y\right)}{xy}.\dfrac{1}{\left(2x-3y\right)}=\dfrac{2x+3y}{xy}\)

11 tháng 12 2016

a) \(\frac{x-1}{x+1}-\frac{x+1}{x-1}+\frac{4}{x^2-1}\left(ĐK:x\ne\pm1\right)\)

\(=\frac{\left(x-1\right)^2-\left(x+1\right)^2+4}{\left(x-1\right)\left(x+1\right)}\)

\(\frac{x^2-2x+1-x^2-2x-1+4}{\left(x-1\right)\left(x+1\right)}\)

\(=\frac{-4x+4}{\left(x-1\right)\left(x+1\right)}=\frac{-4\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}=-\frac{4}{x+1}\)

b) \(\frac{x^3y+xy^3}{x^4y}:\left(x^2+y^2\right)\left(ĐK:x,y\ne0\right)\)

\(=\frac{xy\left(x^2+y^2\right)}{x^4y}\cdot\frac{1}{x^2+y^2}\)

\(=\frac{1}{x^3}\)