K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DH
Đỗ Hoàn
CTVHS VIP
18 tháng 9 2024

1+1=2 bn nhé

18 tháng 9 2024

1 + 1 = 3 ( đùa đấy = 2 đó :))

1 tháng 9 2018

bằng 2

1 tháng 9 2018

\(1+1=2\)

thế nhoa

25 tháng 7 2020

Câu 1:
\(4\sqrt[4]{\left(a+1\right)\left(b+4\right)\left(c-2\right)\left(d-3\right)}\le a+1+b+4+c-2+d-3=a+b+c+d\)

Dấu = xảy ra khi a = -1; b = -4; c = 2; d= 3

25 tháng 7 2020

\(\frac{a^2}{b^5}+\frac{1}{a^2b}\ge\frac{2}{b^3}\)\(\Leftrightarrow\)\(\frac{a^2}{b^5}\ge\frac{2}{b^3}-\frac{1}{a^2b}\)

\(\frac{2}{a^3}+\frac{1}{b^3}\ge\frac{3}{a^2b}\)\(\Leftrightarrow\)\(\frac{1}{a^2b}\le\frac{2}{3a^3}+\frac{1}{3b^3}\)

\(\Rightarrow\)\(\Sigma\frac{a^2}{b^5}\ge\Sigma\left(\frac{5}{3b^3}-\frac{2}{3a^3}\right)=\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}+\frac{1}{d^3}\)

14 tháng 4 2016

Vì a,b,c,d có vai trò như nhau

Giả sử \(a\ge b\ge c\ge d\)

=>\(a^2\ge b^2\ge c^2\ge d^2\)

=>\(\frac{1}{a^2}\le\frac{1}{b^2}\le\frac{1}{c^2}\le\frac{1}{d^2}\)

=>\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{d^2}\le\frac{1}{d^2}+\frac{1}{d^2}+\frac{1}{d^2}+\frac{1}{d^2}\)

=>\(1\le4.\frac{1}{d^2}\)

=>\(\frac{1}{4}\le\frac{1}{d^2}\)

=>\(4\ge d^2\)

=>\(2\ge d\)

Vì d là số tự nhiên khác 0

=>d=1,2

-Xét d=1

=>\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{d^2}=1\)

=>\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{1^2}=1\)

=>\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+1=1\)

=>\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=0\)

\(\frac{1}{a^2}>0,\frac{1}{b^2}>0,\frac{1}{c^2}>0=>\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}>0\)

=>Vô lí

-Xét d=2

\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{2^2}=1\)

=>\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{4}=1\)

=>\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=\frac{3}{4}\)

Vì \(a\ge b\ge c\)

=>\(a^2\ge b^2\ge c^2\)

=>\(\frac{1}{a^2}\le\frac{1}{b^2}\le\frac{1}{c^2}\)

=>\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\le\frac{1}{c^2}+\frac{1}{c^2}+\frac{1}{c^2}\)

=>\(\frac{3}{4}\le3.\frac{1}{c^2}\)

=>\(\frac{1}{4}\le\frac{1}{c^2}\)

=>\(4\ge c^2\)

=>\(2\ge c\)

Vì \(c\ge d=>c\ge2\)

=>c=2

=>\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=\frac{3}{4}\)

=>\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{2^2}=\frac{3}{4}\)

=>\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{4}=\frac{3}{4}\)

=>\(\frac{1}{a^2}+\frac{1}{b^2}=\frac{2}{4}\)

Vì \(a\ge b\)

=>\(a^2\ge b^2\)

=>\(\frac{1}{a^2}\le\frac{1}{b^2}\)

=>\(\frac{1}{a^2}+\frac{1}{b^2}\le\frac{1}{b^2}+\frac{1}{b^2}\)

=>\(\frac{2}{4}\le\frac{2}{b^2}\)

=>\(\frac{1}{4}\le\frac{1}{b^2}\)

=>\(4\ge b^2\)

=>\(2\ge b\)

Vì \(b\ge c=>b\ge2\)

=>b=2

=>\(\frac{1}{a^2}+\frac{1}{b^2}=\frac{2}{4}\)

=>\(\frac{1}{a^2}+\frac{1}{2^2}=\frac{2}{4}\)

=>\(\frac{1}{a^2}+\frac{1}{4}=\frac{2}{4}\)

=>\(\frac{1}{a^2}=\frac{1}{4}\)

=>\(a^2=4=>a=2\)

Vậy a=2,b=2,c=2,d=2

26 tháng 1 2018

CÂU C :5

26 tháng 1 2018

1 + 1 + 1 + 1 + 1

= 1 x 5 

= 5

đs: 5

vậy chọn đáp án C

8 tháng 11 2021

đây là toán lớp 1 à?

13 tháng 4 2018

Nếu số số hạng chia hết cho 2 thì tổng chia hết cho 2

13 tháng 4 2018

nè bao nhiêu chữ số 1 zợ

26 tháng 7 2017

b đứng đó

26 tháng 7 2017

B và  và D

2 tháng 9 2018

1 - 1 = 0

: )

2 tháng 9 2018

1 ~ 1 = 1

a) 1+1=2

b) 1+2=3

c) 1+3=4

d) 1+4=5

e) 1+5=6

15 tháng 11 2019

1+1=2

1+2=3

1+3=4

1+4=5

1+5=6

11 tháng 3 2020

a) 1 - 1 =0

b) 1 + 1 = 2

c) 1 : 1 =1

d) 1 x 1 = 1

11 tháng 3 2020

a,1-1=0

b,1+1=2

c,1:1=1

d,1x1=1