Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cách 1:\(a^2=bc\Rightarrow\frac{a}{b}=\frac{c}{a}\)
Đặt \(\frac{a}{b}=\frac{c}{a}=k\)
\(\Rightarrow\hept{\begin{cases}a=bk\\c=ak\end{cases}}\)
Thay vào rồi chứng minh
Cách 2:\(a^2=bc\Rightarrow\frac{a}{b}=\frac{c}{a}\Rightarrow\frac{a}{c}=\frac{b}{a}\)
\(=\frac{a+b}{c+a}=\frac{a-b}{c-a}\)
\(\Rightarrow\frac{a+b}{a-b}=\frac{a+a}{c-a}\)
cho 3 số a,b,c khác 0 thỏa mãn ab/a+b=bc/b+c=ca/c+a
tính giá trị của biểu thức M=ab+bc+ca/a^2+b^2+c^2
\(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ac}{a+c}\Leftrightarrow\frac{a+b}{ab}=\frac{b+c}{bc}=\frac{a+c}{ac}\Leftrightarrow\frac{1}{b}+\frac{1}{a}=\frac{1}{b}+\frac{1}{c}=\frac{1}{c}+\frac{1}{a}\)
\(\Leftrightarrow\frac{1}{a}=\frac{1}{b}=\frac{1}{c}\Leftrightarrow a=b=c\)
\(\Rightarrow\left(a-b\right)^3+\left(b-c\right)^3+\left(c-a\right)^3=\left(a-a\right)^3+\left(b-b\right)^3+\left(c-c\right)^3=0\)
a) Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)
\(\Rightarrow a=b=c\)
\(\dfrac{a+b}{a-b}=\dfrac{c+a}{c-a}\)
=>(a+b)(c-a)=(a-b)(c+a)
=>\(ac-a^2+bc-ba=ac+a^2-bc-ab\)
=>\(-a^2+bc=a^2-bc\)
=>\(-2a^2=-2bc\)
=>\(a^2=bc\)
\[
\frac{a+b}{a-b} = \frac{c+a}{c-a}
\]
Ta sẽ thực hiện phép nhân chéo:
\[
(a+b)(c-a) = (a-b)(c+a)
\]
Khai triển hai vế của phương trình:
- Vế trái:
\[
(a+b)(c-a) = ac - a^2 + bc - ab
\]
- Vế phải:
\[
(a-b)(c+a) = ac + a^2 - bc - ab
\]
Từ đó ta có:
\[
ac - a^2 + bc - ab = ac + a^2 - bc - ab
\]
Giản lược hai vế:
\[
-a^2 + bc = a^2 - bc
\]
Chuyển các hạng tử về cùng một vế:
\[
-a^2 + bc - a^2 + bc = 0
\]
\[
-2a^2 + 2bc = 0
\]
Chia cả hai vế cho 2:
\[
-a^2 + bc = 0
\]
Chuyển \(-a^2\) qua vế phải:
\[
bc = a^2
\]