Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
\(3^{200}=\left(3^2\right)^{100}=9^{100}>8^{100}=\left(2^3\right)^{100}=2^{300}\)
Vậy \(3^{200}>2^{300}\)
b.
\(5^{200}=\left(5^2\right)^{100}=25^{100}< 32^{100}=\left(2^5\right)^{100}=2^{500}\)
Vậy \(5^{200}< 2^{500}\)
Ta có : \(3^{200}=3^{2.100}=\left(3^2\right)^{100}=9^{100}\)
\(2^{300}=2^{3.100}=\left(2^3\right)^{100}=8^{100}\)
\(\Rightarrow9^{100}>8^{100}\)
\(\Rightarrow3^{200}>2^{300}\)
3200 = 32.100 = 9100 (1)
2300 = 23.100 = 8100 (2)
Từ (1) và(2) ta có: 3200>2300
3200 = 32.100 = (32)100 = 9100
2300 = 23.100 = (23)100 = 8100
9100 > 8100 ( vì 9 > 8 ) nên 3200 > 2300.
2^300=(2^3)^100=8^100
3^200=(3^2)^100=9^100
Vì 9>8 =>9^100>8^100 =>2^300<3^200
ta có :
2300=(23)100=8100
3200=(32)100=9100
vì 8100<9100 nên 2300<3200
2^300=(2^3)^100=8^100
3^200=(3^2)^100=9^100
vi 8^100<9^100 nen 2^300<3^200
Ta có:
\(2^{300}=\left(2^3\right)^{100}=8^{100}\)
\(3^{200}=\left(3^2\right)^{100}=9^{100}\)
\(\Rightarrow3^{200}>2^{300}\)
ta có : 2 ^306 < 2^300 = 8^100 <9^100= 3^200
=> 2^306<3^200
< nhé!
Ta có 2^300=2^(3.100)=8^100
3^200=3^(2.100)=9^100
Vì 8<9=> 2^300<3^200
QUÁ DỄ: 2300 = (23)100 = 8100
3200 = (32)100 = 9100
==> 2300 < 3200
2300 = 23.100 = 8100
3200 = 32.100 = 9100
8100 < 9100
nên 2300 < 3200
2300 và 3200
ta có : 2300 = ( 23 )100 = 8100
3200 = ( 32 )100 = 9100
vì 900 > 800
=> 2300 < 3200
3200 = 32.100
2300 = 23.100
=> 32 > 23 => 3200 > 2300
2300 = (23)100 = 8100 và 3200 = (32)100 = 9100
=> 2300 < 3200
ta co 2^300=(2^3)^100=8^100
3^200=(3^2)^100=9^100
vi 8^100<9^100 -> 2^300<3^200
sos
\(2^{200}< 3^{200}\left(2< 3\right)\)