K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 7

sai lớp rồi nhé bạn!

30 tháng 7

wow lớp 1 đã học cái này ròi à

15 tháng 6 2017

Tam em mặc cái váy đếy bn(kakaka)

15 tháng 6 2017

Tam em mặc váy( tiếng thuần Việt luôn) 

27 tháng 4 2022

hảo lớp 1 ha

27 tháng 4 2022

:)

6 tháng 1 2022

SAI RỒI NHA  BẠN

NẾU NÓI NHƯ THẾ THÌ VIẾT  VÔ TẬN SỐ 0 Ở PHÍA TRƯỚC NHƯ NÀY CŨNG ĐƯỢC HẢ  00000003

6 tháng 1 2022

cậu viết thiếu à viết vào đâu chẳng được 

10 tháng 4 2017

96 va 69

10 tháng 4 2017

Số đó là 69 

18 tháng 12 2015

Ta có:

S=1+3+5+7+9+...+2009+2011

S=[(2011-1):2+1].(2011+1):2

S=1006.2012:2

S=1006.(2012:2)

S=1006.1006

S=10062

=> S là số chính phương

7 tháng 2 2016

gọi 3 phân số đó là
1/a; 1/b; 1/c
vậy ta có: 1/a + 1/b +1/c = 4/n
suy ra n(ab+bc+ca)=4abc (1)
bài toán trên trở thành chứng minh phương trình (1) luôn tồn tại 1cặp nghiệm nguyên(a,b,c)

7 tháng 2 2016

Mình có lời giải này, nếu có chỗ nào sai thì các bạn góp ý nhé:
Nếu n = 3k. Khi đó:

\frac{4}{n} \ = \ \frac{1}{n} \ + \ \frac{3}{n} \ = \ \frac{1}{n+1} \ + \ \frac{1}{n (n+1)} \ + \ \frac{3}{n} \ = \ \frac{1}{3k+1} \ + \ \frac{1}{3k(3k+1)} \ + \ \frac{1}{k}

Nếu n = 3k + 2. Khi đó:

\frac{4}{n} \ = \ \frac{3}{n} \ + \ \frac{1}{n} \ = \ \frac{3}{n+1} \ + \ \frac{3}{n(n+1)} \ + \ \frac{1}{n} \ = \ \frac{1}{k+1} \ + \ \frac{1}{(3k+2)(k+1)} \ + \ \frac{1}{3k+2}

Nếu n = 3k + 1. Khi đó:

\frac{4}{n} \ = \ \frac{3}{n} \ + \ \frac{1}{n} \ = \ \frac{3}{n-1} \ - \ \frac{3}{n(n-1)} \ + \ \frac{1}{n} \ = \ \frac{1}{k} \ - \ \frac{1}{k(3k+1)} \ + \ \frac{1}{3k+1} \ = \ \frac{1}{k} \ + \ \frac{1}{-k(3k+1)} \ + \ \frac{1}{3k+1}

19 tháng 11 2015

dễ lắm, 410=1048576

chi ơi đề đây nhé , các bạn giải được thì giải không được thì thôi, mình chỉ viết đề cho bạn mình thôi mong các bạn thông cảm nhébài 1)cho \(x,y\in Q\) thỏa mãn \(\left(x+y\right)^3=xy\left(3x+3y+2xy\right)\) chứng minh rằng \(\sqrt{1-\frac{1}{xy}}\) là số hữ tỉbài 2 )cho a,b,c là các số hữu tỉ thỏa mãn ab+bc+ca=1. chứng minh rằng \(B=\sqrt{\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)}\in Q\)chú ý chị chi...
Đọc tiếp

chi ơi đề đây nhé , các bạn giải được thì giải không được thì thôi, mình chỉ viết đề cho bạn mình thôi mong các bạn thông cảm nhé

bài 1)

cho \(x,y\in Q\) thỏa mãn \(\left(x+y\right)^3=xy\left(3x+3y+2xy\right)\) chứng minh rằng \(\sqrt{1-\frac{1}{xy}}\) là số hữ tỉ

bài 2 )

cho a,b,c là các số hữu tỉ thỏa mãn ab+bc+ca=1. chứng minh rằng \(B=\sqrt{\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)}\in Q\)

chú ý chị chi em viết cho chị mà chị phải trả công em chứ còn thùy linh là khác 

bài 3) 

cho a,b,c là các số hữ tỉ thỏa mãn ab+bc+ca=1. tính \(C=a.\sqrt{\frac{\left(1+b^2\right)\left(1+c^2\right)}{1+a^2}}+...\) (n0s theo quy luật chi nhé tớ biết đầu cậu thông minh nên tớ viết thế thôi)

bài 4) 

cho a,b,c >0 thỏa mãn abc=1. tính \(A=\frac{\sqrt{a}}{1+\sqrt{a}+\sqrt{ab}}+...\) (cái này cũng theo quy luật)

bài 5) 

giải các phương trình vô tỉ sau 

1,2 không phải làm nên không chép nữa

3)   \(\sqrt{x^2-10x+25}-3x=1\) 

4)    \(x-\frac{1}{2}\sqrt{x^2-8x+16}=2\)

5)   \(\sqrt{x^2-16}+\sqrt{x^2-5x+4}=0\)

6) chú ý đây viết mỏi tay luôn nhớ mai đãi bánh mì với kem đấy 

8
5 tháng 9 2017

lần sau đăng từng câu hỏi lên thôi còn như thế này ms nhìn đã mỏi mắt ns đến j lm

5 tháng 9 2017

đây mà gọi là toán lớp 1 à

3 tháng 5 2016

hahaha. đây mà là toán lớp 1 à? đùa dai quá!

đây mà là toán lớp 1 . vớ vẩn