K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 7

\(B=2x^2-5x+6\\ =2\left(x^2-\dfrac{5}{2}x+3\right)\\ =2\left[\left(x^2-2\cdot x\cdot\dfrac{5}{4}+\dfrac{25}{16}\right)+\dfrac{23}{16}\right]\\ =2\left(x-\dfrac{5}{4}\right)^2+\dfrac{23}{8}\) 

Ta có: \(2\left(x-\dfrac{5}{4}\right)^2\ge0\forall x=>B=2\left(x-\dfrac{5}{4}\right)^2+\dfrac{23}{8}\ge\dfrac{23}{8}\forall x\)

Dấu "=" xảy ra: `x-5/4=0<=>x=5/4` 

26 tháng 7

sai nhé 

18 tháng 11 2017

đổi 2m 3dm = 23dm;43m = 430 dm.

ta có: 430 : 23 =18( dư 16 dm )

đổi 16dm = 1,6 m

vậy với 43m vải sẽ may được 18 bộ quần áo và còn thừa 1,6m vải.

18 tháng 11 2017

Haibara ai lạc đề rồi

6 tháng 10 2021

mọi người ơi giúp mk vs ạ 

mk gấp lắm rồi ạ

11 tháng 10 2019

\(B=2x^2-5x+3\)

\(=2\left(x^2-\frac{5}{2}x+\frac{3}{2}\right)\)

\(=2\left(x^2-\frac{5}{2}x+\frac{25}{16}-\frac{1}{16}\right)\)

\(=2\left[\left(x-\frac{5}{4}\right)^2-\frac{1}{16}\right]\)

\(=2\left[\left(x-\frac{5}{4}\right)^2\right]-\frac{1}{32}\ge\frac{-1}{32}\)

11 tháng 10 2019

\(B=2x^2-5x+3\)

\(=2\left(x^2-\frac{5}{2}x+\frac{3}{2}\right)\)

\(=2\left(x^2-\frac{5}{4}\cdot2x+\left(\frac{5}{4}\right)^2-\left(\frac{5}{4}\right)^2+\frac{3}{2}\right)\)

\(=2\left[\left(x-\frac{5}{4}\right)^2-\frac{25}{16}+\frac{3}{2}\right]\)

\(=2\left[\left(x-\frac{5}{4}\right)^2-\frac{1}{16}\right]\)

\(=2\left(x-\frac{5}{4}\right)^2-\frac{1}{8}\)

\(2\left(x-\frac{5}{4}\right)^2\ge0\)

\(\Rightarrow\left(x-\frac{5}{4}\right)^2-\frac{1}{8}\ge-\frac{1}{8}\)

\(\Rightarrow GTNNB=-\frac{1}{8}\)

 với \(\left(x-\frac{5}{4}\right)^2=0;x=\frac{5}{4}\)

8 tháng 9 2023

\(a,x^2+3x+9\)

\(=x^2+2\cdot x\cdot\dfrac{3}{2}+\left(\dfrac{3}{2}\right)^2+\dfrac{27}{4}\)

\(=\left(x+\dfrac{3}{2}\right)^2+\dfrac{27}{4}\)

Ta thấy: \(\left(x+\dfrac{3}{2}\right)^2\ge0\forall x\)

\(\Rightarrow\left(x+\dfrac{3}{2}\right)^2+\dfrac{27}{4}\ge\dfrac{27}{4}\forall x\)

Dấu \("="\) xảy ra \(\Leftrightarrow x+\dfrac{3}{2}=0\Leftrightarrow x=-\dfrac{3}{2}\)

\(b,2x^2-5x+10\)

\(=2x^2-5x+\dfrac{25}{8}+\dfrac{55}{8}\)

\(=2\left(x^2-2\cdot x\cdot\dfrac{5}{4}+\dfrac{25}{16}\right)+\dfrac{55}{8}\)

\(=2\left(x-\dfrac{5}{4}\right)^2+\dfrac{55}{8}\)

Ta có: \(2\left(x-\dfrac{5}{4}\right)^2\ge0\forall x\)

\(\Rightarrow2\left(x-\dfrac{5}{4}\right)^2+\dfrac{55}{8}\ge\dfrac{55}{8}\forall x\)

Dấu \("="\) xảy ra \(\Leftrightarrow x-\dfrac{5}{4}=0\Leftrightarrow x=\dfrac{5}{4}\)

#\(Toru\)