Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2) b)
Do \(a+b+c=9\Rightarrow\left(a+b+c\right)^2=81\)
\(\Rightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=81\)
\(\Rightarrow2\left(ab+bc+ac\right)=81-141=-60\)
\(ab+bc+ac=-60:2=-30\)
a, B=x^3 + 3xy +y^3 = x^3 +3xy(x+y)+y^3 (vì x+y=1)
= (x+y)^3
= 1^3 =1
b, (a+b+c)^2 =a^2 +b^2 +c^2 +2ab +2bc +2ac
9^2 = 141 +2(ab+bc+ac)
-60 = 2(ab+bc+ac)
ab+ac+bc=-30
Vậy M=-30
c, N =(x+y)^3 -3(x+y)(x^2+y^2) +2(x^3+y^3)
= x^3 + 3x^2 .y + 3xy^2 + -3(x^3+xy^2 +x^2 .y+y^3)+ 2x^3 +2y^3
= x^3 +3x^2 .y + 3xy^2 - 3x^3 -3xy^2 -3x^2 .y -3y^3 +2x^3 +2y^3
= 0
Vậy N=0 .Chúc bạn học tốt.
\(A=a^3+b^3+3ab=\left(a+b\right)\left(a^2+b^2-ab\right)+3ab=a^2+b^2-ab+3ab\)
\(A=a^2+b^2+2ab\)
\(A=\left(a+b\right)^2=1\)
2,a A+4=4+(5x^2+6x+1)/x^2=(9x^2+6x+1)/x^2=(3x+1)^2/x^2 >/ 0 với mọi x
=>A >/ -4 =>minA=-4 , đẳng thức xảy ra khi x=-1/3
2,b dễ c/m bđt : x^3+y^3 >/ (x+y)^3/4,khai triển hết ra còn 3(x-y)^2 >/ 0 ,đẳng thức xảy ra khi x=y
x^6+y^6=(x^2)^3+(y^2)^3 >/ (x^2+y^2)^3/4=1/4 ,đẳng thức xảy ra khi x=y=1/căn(2)
2,c (a^3-3ab^2)^2=a^6-6a^4b^2+9a^2b^4=5^2=25
(b^3-3a^2b)^2=b^6-6a^2b^4+9a^4b^2=10^2=100
Cộng theo vế đc a^6+b^6+3a^2b^4+3a^4b^2=(a^2+b^2)^3=25+100=125 =>S=a^2+b^2=5
a )
\(A=xy\left(3x^2-6xy\right)-3\left(x^3y-2x^2y^2-1\right)\)
\(\Leftrightarrow A=3x^3y-6x^2y^2-3x^3y+6x^2y^2+3\)
\(\Leftrightarrow A=3\)
\(\Leftrightarrow A\)ko phụ thuộc vào g/t của biến
b )
\(B=\left(x-9\right)\left(x-9\right)+\left(2x+1\right)^2-\left(5x-4\right)\left(x-2\right)\)
\(\Leftrightarrow B=x^2-2.x.9+9^2+\left(2x\right)^2+2.2x.1+1-\left[5x^2-4x-10x+8\right]\)
\(\Leftrightarrow B=x^2-18x+81+4x^2+4x+1-5x^2+4x+10x-8\)
\(\Leftrightarrow B=\left(x^2+4x^2-5x^2\right)+\left(-18x+4x+4x+10x\right)+\left(81-8+1\right)\)
\(\Leftrightarrow B=74\)
\(\Leftrightarrow B\)ko phụ thuộc vào g/t của biến
a) \(4a^3b^3c^2x+12a^3b^4c^2-16a^4b^5cx\)
\(=4a^3b^3c\left(cx+3bc-4ab^2x\right)\)
b) \(\left(b-2c\right)\left(a-b\right)-\left(a+b\right)\left(2c-b\right)\)
\(=\left(b-2c\right)\left(a-b+a+b\right)=2a\left(b-2c\right)\)
c) \(3a\left(a+5\right)-2\left(5+a\right)=\left(a+5\right)\left(3a-2\right)\)
d) \(\left(x+1\right)^2-3\left(x+1\right)=\left(x+1\right)\left(x+1-3\right)\)
Aps dụng bất đẳng thức Bu-nhi-a-cốp-xki ta có:\(a+b+c=1\Rightarrow\left(a+b+c\right)^3=1\)1\(\le\left(a^3+b^3+c^3\right)\left(1^2+1^2+1^2\right)\)\(\Rightarrow a^3+b^3+c^3\ge\frac{1}{3}\).Dấu ''='' xảy ra khi và chỉ khi
\(\frac{a}{1}=\frac{b}{1}=\frac{c}{1}\)\(\Leftrightarrow a=b=c\)
`VT = a^3 - b^3`
`= (a-b)(a^2 + ab + b^2)`
`= 1 . (a^2 + ab + b^2)`
`= (a^2 + b^2 - 2ab) + 3ab`
`= (a-b)^2 + 3ab`
`= 1 + 3ab = VP (đpcm)`
-------------------------------
Áp dụng hằng đẳng thức sau:
`a^3 - b^3 = (a-b)(a^2+ab+b^2)`
`(a-b)^2 = a^2 - 2ab + b^2`
Ta có:
\(VT=a^3-b^3\\ =\left(a^3-3a^2b+3ab^2-b^3\right)+\left(3a^2b-3ab^2\right)\\ =\left(a-b\right)^3+3ab\left(a-b\right)\\ =1^3+3ab\cdot1\\ =1+3ab=VP\)