Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(x+6)4=4096
(x+6)4=84
==> x+6=8 hoặc x+6=—8
==> x=8–6 hoặc x=—8–6
==> x= 2 hoặc x=—14
2x—3=128
2x—3=27
==> x—3=7
x=7+3
x=10
Ss: 22018 và 16900
Ta có 16900=(24)900=23600
Vì 22018<23600
Nên 22018<23600
Bài 1: a) So sánh 2500 và 5200
Ta có: 2500= 25.100= (25)100= 32100
5200=52.100=(52)100=25100
32>25
=> 2500>5200
b) So sánh 416 và 164
Ta có: 416=44.4=(44)4=2564
256> 16
=> 416>164
Bài 2: Gọi số cần tìm là a ( a > 0; a thuộc N*)
Vì a là số tự nhiên nhỏ nhất khác 0 và chia hết cho 3;5;7;9;11
=> a thuộc BCNN(3;5;7;9;11)
Ta có: 3=3.1
5=5.1
7=7.1
9=32
11=1.11
=> BCNN(3;5;7;9;11)=5.7.32.11=3465
Vậy số cần tìm bằng 3465
Bài 1: a) So sánh 2500 và 5200
Ta có: 2500= 25.100= (25)100= 32100
5200=52.100=(52)100=25100
Vì cả 2 số trên có số mũ bằng nhau nhưng 32>25 => 32100>25100
=> 2500>5200
b) So sánh 416 và 164
Ta có: 416=44.4=(44)4=2564
Ta có: mũ của 2 số trên bằng nhau nhưng 256> 16
=> 416>164
Bài 2: Gọi số cần tìm là a ( a > 0; a thuộc N*)
Vì a là số tự nhiên nhỏ nhất khác 0 và chia hết cho 3;5;7;9;11 => a thuộc BCNN(3;5;7;9;11)
Ta có: 3=3.1
5=5.1
7=7.1
9=32
11=1.11
=> BCNN(3;5;7;9;11)=5.7.32.11=3465
Vậy số cần tìm bằng 3465
ticks nha bạn!
Bài 1: a) \(M=1+5+5^2+...+5^{100}\)
\(5M=5+5^2+5^3+...+5^{101}\)
\(5M-M=\left(5+5^2+5^3+...+5^{101}\right)-\left(1+5+5^2+...+5^{100}\right)\)
\(4M=5^{101}-1\)
\(M=\frac{5^{101}-1}{4}\)
b) \(N=2+2^2+...+2^{100}\)
\(2N=2^2+2^3+...+2^{101}\)
\(2N-N=\left(2^2+2^3+...+2^{101}\right)-\left(2+2^2+...+2^{100}\right)\)
\(N=2^{101}-2\)
Bài 2:
a) \(16^{32}=\left(2^4\right)^{32}=2^{128}\)
\(32^{16}=\left(2^5\right)^{16}=2^{80}\)
Vì \(2^{128}>2^{80}\Rightarrow16^{32}>32^{16}\)
a)Ta có:\(5^{36}=\left(5^3\right)^{12}=125^{12}\)
\(11^{24}=\left(11^2\right)^{12}=121^{12}\)
Vì \(125^{12}>121^{12}\)\(\Rightarrow5^{36}>11^{24}\)
a) 5^23 và 6 . 5^22
Ta có: 5^23 = 5^22 . 5
Vì 5 < 6 nên 5^23 < 6 . 5^22
b) 7 . 2^13 và 2^16
Ta có: 2^16 = 2^13 . 2^3 = 2^13 . 8
Vì 7 < 8 nên 7 . 2^13 < 2^16
c) 21^15 và 27^5 . 49^8
Ta có: 21^15 = (3.7)^15 = 3^15 . 7^15
27^5 . 49^8 = (3^3)^5 . (7^2)^8 = 3^15 . 7^16
Vì 7^15 < 7^16 nên 21^15 < 27^5 . 49^8
Trả lời:
a, Ta có: 320 ; 274 = ( 33 )4 = 312
Vì 320 > 312 nên 320 > 274
b, 225 ; 166 = ( 24 )6 = 224
Vì 225 > 224 nên 225 > 166
bằng nhau vì
\(2^4=16\)
\(2.2.2.2=16\)
16=16