Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^8-97x^4+1296=0\)
\(\Leftrightarrow x^8-81x^4-16x^4+1296=0\)
\(\Leftrightarrow x^4\left(x^4-81\right)-16\left(x^4-81\right)=0\)
\(\Leftrightarrow\left(x^4-81\right)\left(x^4-16\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^4-81=0\\x^4-16=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x^4=81\\x^4=16\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\pm3\\x=\pm2\end{matrix}\right.\)
Vậy pt có tập nghiệm S = {-3;-2;2;3}
2/ vì x2 + x +1>0 nên
PT <=> x2 +x =0
3/ PT <=> (x4 + x2 -18)2 - 162 = 0
Tới đây thì bài toán đã đơn giản hơn rất nhiều nên bạn tự giải tiếp nha
\(\left\{{}\begin{matrix}\dfrac{1}{x+1}+\dfrac{1}{y+1}+\dfrac{1}{z+1}=1\\xyz\left(x+y+z\right)\left(x+1\right)\left(y+1\right)\left(z+1\right)=1296\end{matrix}\right.\)
Đặt \(\dfrac{1}{x+1}=a;\dfrac{1}{y+1}=b;\dfrac{1}{z+1}=c\left(a,b,c>0\right)\)
\(\Rightarrow a+b+c=1\)
\(\dfrac{1}{x+1}=a\)
\(\Rightarrow x+1=\dfrac{1}{a}\)
\(\Rightarrow x=\dfrac{1}{a}-1=\dfrac{1-a}{a}=\dfrac{b+c}{a}\)
Tương tự, ta có: \(y=\dfrac{a+c}{b};z=\dfrac{a+b}{c}\)
Đặt \(M=xyz\left(x+y+z\right)\left(x+1\right)\left(y+1\right)\left(z+1\right)\)
\(=\dfrac{\left(b+c\right)\left(a+c\right)\left(a+b\right)}{abc}\times\left(\dfrac{b+c}{a}+\dfrac{a+c}{b}+\dfrac{a+b}{c}\right)\times\dfrac{1}{abc}\)
\(=\dfrac{\left(b+c\right)\left(a+c\right)\left(a+b\right)}{a^2b^2c^2}\times\left(\dfrac{b}{a}+\dfrac{a}{b}+\dfrac{c}{a}+\dfrac{a}{c}+\dfrac{c}{b}+\dfrac{b}{c}\right)\)
\(\ge\dfrac{8abc}{a^2b^2c^2}\times\left(2+2+2\right)\) (bđt AM - GM)
\(\ge\dfrac{8}{\dfrac{\left(a+b+c\right)^3}{27}}\times6=1296\)
Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{3}\Rightarrow x=y=z=2\)
a/ \(\Delta=1-4m\ge0\Rightarrow m\le\frac{1}{4}\)
Theo Viet ta có: \(\left\{{}\begin{matrix}x_1+x_2=1\\x_1x_2=m\end{matrix}\right.\)
b/ \(\Delta=97^2-4n\ge0\Rightarrow n\le\frac{9409}{4}\)
Gọi \(a;b\) là các nghiệm của (2) \(\Rightarrow\left\{{}\begin{matrix}a+b=97\\ab=n\end{matrix}\right.\)
Mà \(\left\{{}\begin{matrix}a=x_1^4\\b=x_2^4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a+b=x_1^4+x_2^4=\left(x_1^2+x_2^2\right)^2-2\left(x_1x_2\right)^2\\ab=\left(x_1x_2\right)^4\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a+b=\left[\left(x_1+x_2\right)^2-2x_1x_2\right]^2-2\left(x_1x_2\right)^2\\ab=\left(x_1x_2\right)^4\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a+b=\left(1-2m\right)^2-2m^2=2m^2-4m+1\\ab=m^4\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}2m^2-4m+1=97\\n=m^4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m=8\\m=-6\end{matrix}\right.\\n=m^4\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}n=4096\left(l\right)\\n=1296\end{matrix}\right.\)
Gọi x1,x2 là hai nghiệm của pt (1) : x^2 - 97x + a = 0 và x3,x4 là 2 nghiệm của pt (2) : x^2 - x + b = 0
Theo hệ thức Vi-ét :
x1 + x2 = 97 và x1.x2 = a
x3 + x4 = 1 và x3.x4 = b
Theo đề bài :
* x1 + x2 = x3^4 + x4^4
<=> x1 + x2 = (x3^2 + x4^2)^2 - 2.(x3.x4)^2
<=> x1 + x2 = [(x3 + x4)^2 - 2.x3.x4]^2 - 2(x3.x4)^2
<=> 97 = (1 - 2b)^2 - 2b^2
<=> 2b^2 - 4b - 96 = 0 (1)
* x1.x2 = (x3.x4)^4
<=> b^4 = a (2)
Từ (1) được b = 8 hoặc b = -6
Suy ra a = 4096 hoặc a = 1296
Thử lại nhận a = 1296
Nguồn: https://vn.answers.yahoo.com/question/index?qid=20130328075420AAV3DV4
Lê Phương Thảo em mới lớp 3 mà sao đòi làm bài lớp 9 thế hả em