Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: ^ABH=^HAC (Cùng phụ với ^BAH) => 1/2^ABH=1/2^HAC => ^EBA=^EAC
^EAC+^BAE=^BAC=900. Mà ^EBA=^EAC => ^EBA+^BAE=900.
Xét tam giác ABE: ^EBA+^BAE=900 => ^AEB=900.
=> Tam giác ABE vuông tại E (đpcm)
b) Gọi M là giao điểm của CJ và AI.
Gọi K là giao điểm của BE và CM.
^ACH=^BAH (Cùng phụ với ^HAC) => 1/2^ACH=1/2^BAH => ^MAB=^ACM
^MAB+^MAC=900 => ^ACM+^MAC=900 => Tam giác AMC vuông tại M.
Xét tam giác AIJ: IE vuông góc AJ, JM vuông góc AI. Mà IE giao JM tại K.
=> K là trực tâm của tam giác AIJ => AK vuông góc IJ.
Xét tam giác ABC: BE là phân giác ^ABC, CM là phân giác ^ACB.
BE giac CM tại K => AK là phân giác ^BAC. Mà AD là phân giác ^BAC.
=> A,K,D thẳng hàng => AD vuông góc với IJ (đpcm)
Bạn tham khảo lời giải tại đây:
https://hoc24.vn/cau-hoi/cho-tam-giac-abc-vuong-o-a-duong-cao-ah-phan-giac-ad-goi-i-j-lan-luot-la-cac-giao-diem-cac-duong-phan-giac-cua-tam-giac-abh-ach-e-la-giao-diem-c.8915069447339
a) Ta có: ^ABH=^HAC (Cùng phụ với ^BAH) => 1/2^ABH=1/2^HAC => ^EBA=^EAC
^EAC+^BAE=^BAC=900. Mà ^EBA=^EAC => ^EBA+^BAE=900.
Xét tam giác ABE: ^EBA+^BAE=900 => ^AEB=900.
=> Tam giác ABE vuông tại E (đpcm)
b) Gọi M là giao điểm của CJ và AI.
Gọi K là giao điểm của BE và CM.
^ACH=^BAH (Cùng phụ với ^HAC) => 1/2^ACH=1/2^BAH => ^MAB=^ACM
^MAB+^MAC=900 => ^ACM+^MAC=900 => Tam giác AMC vuông tại M.
Xét tam giác AIJ: IE vuông góc AJ, JM vuông góc AI. Mà IE giao JM tại K.
=> K là trực tâm của tam giác AIJ => AK vuông góc IJ.
Xét tam giác ABC: BE là phân giác ^ABC, CM là phân giác ^ACB.
BE giac CM tại K => AK là phân giác ^BAC. Mà AD là phân giác ^BAC.
=> A,K,D thẳng hàng => AD vuông góc với IJ (đpcm)
a) Ta có: ^ABH=^HAC (Cùng phụ với ^BAH) => 1/2^ABH=1/2^HAC => ^EBA=^EAC
^EAC+^BAE=^BAC=900
. Mà ^EBA=^EAC => ^EBA+^BAE=900
.
Xét tam giác ABE: ^EBA+^BAE=900
=> ^AEB=900
.
=> Tam giác ABE vuông tại E (đpcm)
b) Gọi M là giao điểm của CJ và AI.
Gọi K là giao điểm của BE và CM.
^ACH=^BAH (Cùng phụ với ^HAC) => 1/2^ACH=1/2^BAH => ^MAB=^ACM
^MAB+^MAC=900
=> ^ACM+^MAC=900
=> Tam giác AMC vuông tại M.
Xét tam giác AIJ: IE vuông góc AJ, JM vuông góc AI. Mà IE giao JM tại K.
=> K là trực tâm của tam giác AIJ => AK vuông góc IJ.
Xét tam giác ABC: BE là phân giác ^ABC, CM là phân giác ^ACB.
BE giac CM tại K => AK là phân giác ^BAC. Mà AD là phân giác ^BAC.
=> A,K,D thẳng hàng => AD vuông góc với IJ (đpcm)
gọi F là gia điểm của AI và AJ; M là giao điểm của AI và BC; N là giao điểm của AJ và BC
ta có: AN là tia phân giác của nên = (1)
mà + = ; +=(2)
(1)(2) = tam giác ABN cân tại B BF là đường phân giác đồng thời là đường cao ứng với cạnh AN
BF vuông góc với AN
chứng minh tương tự: += ; += ; AM là tia phân giác của nên =
từ những điều trên ta có = tam giác AMC cân tại C CE là đường phân giác đồng thời là đường cao ứng với cạnh AM CE vuông góc với AM
tam giác ABC có 3 đường phân giác BF,CE,AD nên BF,CE,AD phải đồng quy tại 1 điểm (ta gọi điểm đó là K) (theo tính chất 3 đường phân giác trong một tam giác)
đúng không các pạn !!!
Let's break down the problem step by step:
Step 1:
We are given a right triangle ABC at vertex A, with altitude AH and median AD. We also know that I and J are the points where the medians of triangles ABH and ACH intersect with each other.
Step 2:
Since triangle ABC is a right triangle, we know that angle A is a right angle (90°). Therefore, we can conclude that triangle ABE is also a right triangle (with angle ABE being a right angle).
Step 3:
Now, let's focus on triangle ABH. Since I is the point where the median of triangle ABH intersects with the line segment AB, we know that AI = IB (by definition of median). Similarly, since J is the point where the median of triangle ACH intersects with the line segment AC, we know that AJ = JC (by definition of median).
Step 4:
Using the fact that I and J are on opposite sides of angle ABE, we can write:
AI + IB = AJ + JC
Since AI = IB and AJ = JC, we can simplify this equation to:
2IB = 2JC
Step 5:
Now, let's look at the triangles ABE and ACE. Since they share side AE and angle E is common to both triangles, we can say that:
∠EAB = ∠ECA (common angles)
Using this fact, we can conclude that:
AE = EB (since opposite sides of equal angles are equal)
Step 6:
Now we have:
AE = EB and IB = JC
Using these two equations, we can write:
IJ = IB - JC = AE - AE = 0
So, IJ is a zero-length line segment!
Conclusion:
Since IJ is a zero-length line segment, it means that I and J coincide with each other. This implies that:
IJ ⊥ AD (I and J are collinear with AD)
Therefore, we have shown that triangle ABE is a right triangle and IJ is perpendicular to AD.
Answer:
a. Tam giác ABE vuông b) IJ vuông góc với AD