K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Let's break down the problem step by step:

Step 1:

We are given a right triangle ABC at vertex A, with altitude AH and median AD. We also know that I and J are the points where the medians of triangles ABH and ACH intersect with each other.

Step 2:

Since triangle ABC is a right triangle, we know that angle A is a right angle (90°). Therefore, we can conclude that triangle ABE is also a right triangle (with angle ABE being a right angle).

Step 3:

Now, let's focus on triangle ABH. Since I is the point where the median of triangle ABH intersects with the line segment AB, we know that AI = IB (by definition of median). Similarly, since J is the point where the median of triangle ACH intersects with the line segment AC, we know that AJ = JC (by definition of median).

Step 4:

Using the fact that I and J are on opposite sides of angle ABE, we can write:

AI + IB = AJ + JC

Since AI = IB and AJ = JC, we can simplify this equation to:

2IB = 2JC

Step 5:

Now, let's look at the triangles ABE and ACE. Since they share side AE and angle E is common to both triangles, we can say that:

∠EAB = ∠ECA (common angles)

Using this fact, we can conclude that:

AE = EB (since opposite sides of equal angles are equal)

Step 6:

Now we have:

AE = EB and IB = JC

Using these two equations, we can write:

IJ = IB - JC = AE - AE = 0

So, IJ is a zero-length line segment!

Conclusion:

Since IJ is a zero-length line segment, it means that I and J coincide with each other. This implies that:

IJ ⊥ AD (I and J are collinear with AD)

Therefore, we have shown that triangle ABE is a right triangle and IJ is perpendicular to AD.

Answer:

a. Tam giác ABE vuông b) IJ vuông góc với AD

1 tháng 7 2021

tk : Câu hỏi của Cát Thảo Ngân

1 tháng 7 2021

cảm ơn nha

24 tháng 7 2023

loading...

a) Ta có: ^ABH=^HAC (Cùng phụ với ^BAH) => 1/2^ABH=1/2^HAC => ^EBA=^EAC

^EAC+^BAE=^BAC=900. Mà ^EBA=^EAC => ^EBA+^BAE=900.

Xét tam giác ABE: ^EBA+^BAE=900 => ^AEB=900.

=> Tam giác ABE vuông tại E (đpcm)

b) Gọi M là giao điểm của CJ và AI.

Gọi K là giao điểm của BE và CM.

^ACH=^BAH (Cùng phụ với ^HAC) => 1/2^ACH=1/2^BAH => ^MAB=^ACM

^MAB+^MAC=900 => ^ACM+^MAC=900 => Tam giác AMC vuông tại M.

Xét tam giác AIJ: IE vuông góc AJ, JM vuông góc AI. Mà IE giao JM tại K.

=> K là trực tâm của tam giác AIJ => AK vuông góc IJ.

Xét tam giác ABC: BE là phân giác ^ABC, CM là phân giác ^ACB.

BE giac CM tại K => AK là phân giác ^BAC. Mà AD là phân giác ^BAC.

=> A,K,D thẳng hàng => AD vuông góc với IJ (đpcm)

AH
Akai Haruma
Giáo viên
30 tháng 3

Bạn tham khảo lời giải tại đây:

https://hoc24.vn/cau-hoi/cho-tam-giac-abc-vuong-o-a-duong-cao-ah-phan-giac-ad-goi-i-j-lan-luot-la-cac-giao-diem-cac-duong-phan-giac-cua-tam-giac-abh-ach-e-la-giao-diem-c.8915069447339

17 tháng 8 2017

A B C D H I J E K M

a) Ta có: ^ABH=^HAC (Cùng phụ với ^BAH) => 1/2^ABH=1/2^HAC => ^EBA=^EAC

^EAC+^BAE=^BAC=900. Mà ^EBA=^EAC => ^EBA+^BAE=900.

Xét tam giác ABE: ^EBA+^BAE=900 => ^AEB=900.

=> Tam giác ABE vuông tại E (đpcm)

b) Gọi M là giao điểm của CJ và AI.

Gọi K là giao điểm của BE và CM.

^ACH=^BAH (Cùng phụ với ^HAC) => 1/2^ACH=1/2^BAH => ^MAB=^ACM

^MAB+^MAC=900 => ^ACM+^MAC=900 => Tam giác AMC vuông tại M.

Xét tam giác AIJ: IE vuông góc AJ, JM vuông góc AI. Mà IE giao JM tại K.

=> K là trực tâm của tam giác AIJ => AK vuông góc IJ.

Xét tam giác ABC: BE là phân giác ^ABC, CM là phân giác ^ACB.

BE giac CM tại K => AK là phân giác ^BAC. Mà AD là phân giác ^BAC.

=> A,K,D thẳng hàng => AD vuông góc với IJ (đpcm)

a) Ta có: ^ABH=^HAC (Cùng phụ với ^BAH) => 1/2^ABH=1/2^HAC => ^EBA=^EAC
^EAC+^BAE=^BAC=900
. Mà ^EBA=^EAC => ^EBA+^BAE=900
.
Xét tam giác ABE: ^EBA+^BAE=900
 => ^AEB=900
.
=> Tam giác ABE vuông tại E (đpcm)
b) Gọi M là giao điểm của CJ và AI.
Gọi K là giao điểm của BE và CM.
^ACH=^BAH (Cùng phụ với ^HAC) => 1/2^ACH=1/2^BAH => ^MAB=^ACM
^MAB+^MAC=900
 => ^ACM+^MAC=900
 => Tam giác AMC vuông tại M.
Xét tam giác AIJ: IE vuông góc AJ, JM vuông góc AI. Mà IE giao JM tại K.
=> K là trực tâm của tam giác AIJ => AK vuông góc IJ.
Xét tam giác ABC: BE là phân giác ^ABC, CM là phân giác ^ACB.
BE giac CM tại K => AK là phân giác ^BAC. Mà AD là phân giác ^BAC.
=> A,K,D thẳng hàng => AD vuông góc với IJ (đpcm)

gọi F là gia điểm của AI và AJ; M là giao điểm của AI và BC; N là giao điểm của AJ và BC
ta có: AN là tia phân giác của nên = (1)
mà + = ; +=(2)
(1)(2) =  tam giác ABN cân tại B  BF là đường phân giác đồng thời là đường cao ứng với cạnh AN
 BF vuông góc với AN
chứng minh tương tự: += ; += ; AM là tia phân giác của  nên =
từ những điều trên ta có =  tam giác AMC cân tại C  CE là đường phân giác đồng thời là đường cao ứng với cạnh AM  CE vuông góc với AM
tam giác ABC có 3 đường phân giác BF,CE,AD nên BF,CE,AD phải đồng quy tại 1 điểm (ta gọi điểm đó là K) (theo tính chất 3 đường phân giác trong một tam giác)

đúng không các pạn !!!

21 tháng 2 2016

chuẩn rồi đó. biết làm rồi mà sao còn phai hỏi vậy