Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=1+2 +22+.....+22024
2A=2(1+2 +22+.....+22024)
2A=2+22 +23+.....+22025
2A-A=(2+22 +23+.....+22025)-(1+2 +22+.....+22024)
A=22025-1
\(S=5+5^1+5^2+5^3+...+5^{2024}\)
\(=5+\left(5^1+5^2+5^3+5^4\right)+\left(5^5+5^6+5^7+5^8\right)+...+\left(5^{2021}+5^{2022}+5^{2023}+5^{2024}\right)\)
\(=5+\left(5^1+5^2+5^3+5^4\right)+5^4\left(5^1+5^2+5^3+5^4\right)+...+5^{2020}\left(5^1+5^2+5^3+5^4\right)\)
\(=5+780\left(1+5^4+...+5^{2020}\right)\)
Có \(780⋮65\)nên \(780\left(1+5^4+...+5^{2020}\right)⋮65\)
suy ra \(S\)chia cho \(65\)dư \(5\).
a) 49.(-34)+(-65).49-49 = 49. (-34-65-1)= 49. (-100)= -4900
b) -268-(-47-168)-147 = (-268 + 168) - (147 - 47)= -100 -100=-200
c) (-2)2.(-3)-[(-1)2024+8]:(-3)2 = 4. (-3) - [1 +8]:9 = -12 - 9:9 = -12 - 1 = -13
d) 67-[8+7.32 -24:6+(9-7)3]:15 = 67 - [8 + 7.9 - 4 + 23 ] : 15
= 67 - [8+63-4+8]:15 = 67 - 75:15 = 67 - 5 = 62
a, 1020 = 102.10 = 10010 > 2010
b, 334 = 32.17 = 917
251 = 23.17 = 817
917 > 817
nên 334 > 251
c, 233 = 211.3 = 20483 > 20243
Bài 2: Tìm chữ số hàng chục của 20112010
có nghĩa là 20112010 : 100
Ta có:
20112 \(\equiv\) 21(mod100)
\(\left(2011^2\right)^5\equiv21^5\equiv1\left(mod100\right)\)
\(\left(2011^{10}\right)^{200}\equiv1^{200}\equiv1\left(mod100\right)\)
Có: \(2011^{2000}.2011^2.2011^2.2011^2.2011^2.2011^2\equiv1.21.21.21.21\)
\(\equiv4084101\)
Vậy chữ số hàng đơn vị là 1, chữ số hàng chục là 0
1a) 334 = (32)17 = 917
251 = (23)17 = 817
Vì 917 > 817 => 334 > 251
b) 233 = (211)3 = 20483
Vì 20243 < 20483 => 20243 < 233
\(A=\dfrac{2024^{2023}+1}{2024^{2024}+1}\)
\(2024A=\dfrac{2024^{2024}+2024}{2024^{2024}+1}=\dfrac{\left(2024^{2024}+1\right)+2023}{2024^{2024}+1}=\dfrac{2024^{2024}+1}{2024^{2024}+1}+\dfrac{2023}{2024^{2024}+1}=1+\dfrac{2023}{2024^{2024}+1}\)
\(B=\dfrac{2024^{2022}+1}{2024^{2023}+1}\)
\(2024B=\dfrac{2024^{2023}+2024}{2024^{2023}+1}=\dfrac{\left(2024^{2023}+1\right)+2023}{2024^{2023}+1}=\dfrac{2024^{2023}+1}{2024^{2023}+1}+\dfrac{2023}{2024^{2023}+1}=1+\dfrac{2023}{2024^{2023}+1}\)
Vì \(2024>2023=>2024^{2024}>2024^{2023}\)
\(=>2024^{2024}+1>2024^{2023}+1\)
\(=>\dfrac{2023}{2024^{2023}+1}>\dfrac{2023}{2024^{2024}+1}\)
\(=>A< B\)
\(#PaooNqoccc\)
0