K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 7

\(\dfrac{4}{x}+\dfrac{2}{y}=1\\ \Rightarrow\dfrac{4y}{xy}+\dfrac{2x}{xy}=1\\ \Rightarrow\dfrac{2x+4y}{xy}=1\\ \Rightarrow2x+4y=xy\\ \Rightarrow xy-2x-4y=0\\ \Rightarrow x\left(y-2\right)-4y+8=8\\ \Rightarrow x\left(y-2\right)-4\left(y-2\right)=8\\ \Rightarrow\left(y-2\right)\left(x-4\right)=8\)

Vì x,y thuộc Z => y - 2 và x - 4 thuộc Ư(8)  

Ta có bảng sau: 

 y - 2        2      -2      4      -4        1     8         -8       -1    
 x - 4   4   -4   2  -2   8    1   -1   -8
 y    4    0   6   -2    3  10  -6   1
 x   8    0   6    2  12    5   3   -4

Vậy: ...

10 tháng 7

Để tìm ra giá trị của x làm cho biểu thức 4/x + 2/x = 1 bằng 1, chúng ta có thể làm như sau:

  1. Đầu tiên, ta tích phân cả hai vế của phương trình, ta có: (4/x)x^2 + (2/x)x^2
  2. Điều này làm cho phương trình trở nên đơn giản hơn: (2/x)x^2 = 6
  3. Sau đó, để tìm ra x, ta cần chia vế trái của phương trình này cho cả hai bên, ta sẽ được: 2x = 6
    Sau khi chia cả hai vế của phương trình bởi 2, chúng ta sẽ được: 2x = 6 => x = 3 Bởi vậy, x = 3 là giá trị gây phương trình trở nên đúng.
 
4 tháng 8 2021

còn cách làm khác không ạ?

 

\(\Rightarrow x^2+2x+1-y^2-4y-4-7=0\\ \Leftrightarrow\left(x+1\right)^2-\left(y+2\right)^2=7\\ \Leftrightarrow\left\{{}\begin{matrix}\left(x+1\right)^2=16\\\left(y+2\right)^2=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left\{{}\begin{matrix}x+1=4\\y+2=3\end{matrix}\right.\\\left\{{}\begin{matrix}x+1=-4\\y+2=-3\end{matrix}\right.\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\)

11 tháng 2 2022

Bạn làm như thế này là sai rồi nhé bạn dùng HDT số 3 rồi xét các ước của pt=> nghiệm nha

13 tháng 8 2021

đề có thiếu không vậy?

13 tháng 8 2021

không ạ.

 

ĐKXĐ: \(x\notin\left\{0;-9\right\}\)

Ta có: \(\dfrac{1}{x+9}-\dfrac{1}{x}=\dfrac{1}{5}+\dfrac{1}{4}\)

\(\Leftrightarrow\dfrac{20x}{20x\left(x+9\right)}-\dfrac{20\left(x+9\right)}{20x\left(x+9\right)}=\dfrac{4x\left(x+9\right)+5x\left(x+9\right)}{20x\left(x+9\right)}\)

Suy ra: \(4x^2+36x+5x^2+45x=20x-20x-180\)

\(\Leftrightarrow9x^2+81x+180=0\)

\(\Leftrightarrow x^2+9x+20=0\)

\(\Leftrightarrow x^2+4x+5x+20=0\)

\(\Leftrightarrow x\left(x+4\right)+5\left(x+4\right)=0\)

\(\Leftrightarrow\left(x+4\right)\left(x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\left(nhận\right)\\x=-5\left(nhận\right)\end{matrix}\right.\)

Vậy: S={-4;-5}

8 tháng 5 2021

Hướng làm:

Thấy cả tử mẫu cộng lại đều bằng 2021 → Cộng thêm 1 rồi quy đồng với mỗi phân thức

\(\dfrac{x+2}{2019}+1+\dfrac{x+3}{2018}+1=\dfrac{x+4}{2017}+1+\dfrac{x}{2021}+1\\ \Leftrightarrow\dfrac{x+2021}{2019}+\dfrac{x+2021}{2018}-\dfrac{x+2021}{2017}-\dfrac{x+2021}{2021}=0\\ \Leftrightarrow\left(x+2021\right)\left(\dfrac{1}{2019}+\dfrac{1}{2018}-\dfrac{1}{2017}-\dfrac{1}{2021}\right)=0\\ \Leftrightarrow x+2021=0\Leftrightarrow x=-2021\)

8 tháng 5 2021

\(< =>\dfrac{x+2}{2019}+1+\dfrac{x+3}{2018}+1=\dfrac{x+4}{2017}+1+\dfrac{x}{2021}+1\)

\(< =>\dfrac{x+2+2019}{2019}+\dfrac{x+3+2018}{2018}=\dfrac{x+4+2017}{2017}+\dfrac{x+2021}{2021}\)

\(< =>\dfrac{x+2021}{2019}+\dfrac{x+2021}{2018}-\dfrac{x+2021}{2017}-\dfrac{x+2021}{2021}=0\)

\(< =>\left(x+2021\right)\left(\dfrac{1}{2019}+\dfrac{1}{2018}-\dfrac{1}{2017}-\dfrac{1}{2021}=\right)=0\)

\(< =>x+2021=0< =>x=-2021\)

Vậy....

 

loading...  loading...  

14 tháng 3 2022

rút gọn à banj

14 tháng 3 2022

đúng rồi á

a: \(A=\dfrac{2x^2+x^2-1-2x^2+2x+1}{x\left(x+1\right)}=\dfrac{x^2+2x}{x\left(x+1\right)}=\dfrac{x+2}{x+1}\)

b: Ta có: \(x^2-2x=0\)

=>x=2

Thay x=2 vào A, ta được:

\(A=\dfrac{2+2}{2+1}=\dfrac{4}{3}\)

5 tháng 1 2022

(a)

\(A=\dfrac{2x}{x+1}+\dfrac{x-1}{x}-\dfrac{2x^2-2x-1}{x^2+x}\\ =\dfrac{2x}{x+1}+\dfrac{x-1}{x}-\dfrac{2x^2-2x-1}{x\left(x+1\right)}=\dfrac{2x^2}{x\left(x+1\right)}+\dfrac{x^2-1}{x\left(x+1\right)}-\dfrac{2x^2-2x-1}{x\left(x-1\right)}\)

\(=\dfrac{2x^2+x^2-1-2x^2+2x+1}{x\left(x+1\right)}=\dfrac{x^2+2x+1}{x\left(x+1\right)}=\dfrac{\left(x+1\right)\left(x+1\right)}{x\left(x+1\right)}=\dfrac{x+1}{x}\)

(b)

\(x^2-2x=0\\ x\left(x-2\right)=0\)

=>x=0 hoặc x=2 mà đk x khác 0 nên thay x=2 vào bt A , ta có:

\(\dfrac{x+1}{x}=\dfrac{2+1}{2}=\dfrac{3}{2}\)