K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a=(x+1^2022)+2024=0

.                x+1^2022=2024

                           x+1=2024

                               x=2023

Vậy đa thức a có nghiệm là x=2023

Đặt E(x)=0

\(\Leftrightarrow5x^2+2022=0\)

\(\Leftrightarrow5x^2=-2022\)(Vô lý)

12 tháng 7 2021

Để x là nghiệm của E(x) thì:

5x2  + 2020= 0

⇔ 5x2 = -2022

Mà 5x> 0 ( Với mọi x )

⇒ E(x) không có nghiệm.

 

12 tháng 4 2023

a , | 4x + 2020 | = 0

b , | 2x + 1/4 |  + | -5 | = | -14 |

c , | 2020 - 5x | - | 3 | = - | -8 |

d , | x mũ 2 + 4x | = 0 

e , | x-1 | + 3x = 1 

g , | 2-3x | + 3x = 2

h , | 5x-4 | + 5x = 4 

i , | x - 1/4 | - | 2x + 5 | = 0 

k , | 5x - 7 | - | 8-5x | = 0 

n , | x mũ 3 -

    

AH
Akai Haruma
Giáo viên
29 tháng 12 2023

Lời giải:
Áp dụng BĐT dạng $|a|+|b|\geq |a+b|$ ta có:
$|x-2020|+|x-2024|=|x-2020|+|2024-x|\geq |x-2020+2024-x|=4$

$|x-2022|\geq 0$ (theo tính chất trị tuyệt đối)

$\Rightarrow |x-2020|+|x-2024|+|x-2022|\geq 4+0=4$

$\Rightarrow P\geq 4$

Vậy $P_{\min}=4$. Giá trị này đạt được khi $(x-2020)(2024-x)\geq 0$ và $x-2022=0$

Hay $x=2022$

9 tháng 7 2021

\(4x^2+4x+2022=4x^2+4x+1+2021=\left(2x+1\right)^2+2021\ge2021\)

dấu "=" xảy ra \(< =>2x+1=0< =>x=\dfrac{-1}{2}\)

Đặt \(-6x^2+3x+3=0\)

\(\Leftrightarrow-6x^2+6x-3x+3=0\)

\(\Leftrightarrow-6x\left(x-1\right)-3\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(2x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{1}{2}\end{matrix}\right.\)

f(x)=0

=>x=1/2

g(1/2)=0

=>1-1/2a+1=0

=>2-1/2a=0

=>a=4

22 tháng 6 2020

a) \(A\left(x\right)=0\Leftrightarrow2x-1=0\Leftrightarrow x=\frac{1}{2}\)

b) \(A\left(x\right)=0\Leftrightarrow3x-1=0\Leftrightarrow x=\frac{1}{3}\)

c) \(A=\left|x-1\right|+\left|x-2019\right|=\left|x-1\right|+\left|2019-x\right|\ge\left|x-1+2019-x\right|=2018\)

Dấu "=" xảy ra khi: \(\hept{\begin{cases}x-1\ge0\\2019-x\ge0\end{cases}\Rightarrow}1\le x\le2019\)