Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐK : \(x\ne\pm1;x\ne\pm2\)
\(...\Leftrightarrow\left(\dfrac{1}{x-1}-\dfrac{1}{x+1}\right)+\left(\dfrac{1}{x-2}-\dfrac{1}{x+2}\right)=0\)
\(\Leftrightarrow\dfrac{x+1-x+1}{x^2-1}+\dfrac{x+2-x+2}{x^2-4}=0\)
\(\Leftrightarrow\dfrac{2}{x^2-1}+\dfrac{4}{x^2-4}=0\)
\(\Leftrightarrow\dfrac{2x^2-8+4x^2-4}{\left(x^2-1\right)\left(x^2-4\right)}=0\)
\(\Leftrightarrow6x^2-12=0\)
\(\Rightarrow x^2=2\)
\(\Rightarrow x=\pm\sqrt{2}\) ( thỏa mãn)
Bài 2 .
a) \(\dfrac{2x}{x^2+2xy}+\dfrac{y}{xy-2y^2}+\dfrac{4}{x^2-4y^2}\)
\(=\dfrac{2x}{x\left(x+2y\right)}+\dfrac{y}{y\left(x-2y\right)}+\dfrac{4}{\left(x-2y\right)\left(x+2y\right)}\)
\(=\dfrac{2xy\left(x-2y\right)+xy\left(x+2y\right)+4xy}{xy\left(x+2y\right)\left(x-2y\right)}\)
\(=\dfrac{2x^2y-2xy^2+x^2y+2xy^2+4xy}{xy\left(x+2y\right)\left(x-2y\right)}\)
\(=\dfrac{3x^2y+4xy}{xy\left(x+2y\right)\left(x-2y\right)}\)
b) Sai đề hay sao ý
c) \(\dfrac{2x+y}{2x^2-xy}+\dfrac{16x}{y^2-4x^2}+\dfrac{2x-y}{2x^2+xy}\)
\(=\dfrac{2x+y}{x\left(2x-y\right)}+\dfrac{-16x}{\left(2x-y\right)\left(2x+y\right)}+\dfrac{2x-y}{x\left(2x+y\right)}\)
\(=\dfrac{\left(2x+y\right)^2-16x^2+\left(2x-y\right)^2}{x\left(2x-y\right)\left(2x+y\right)}\)
\(=\dfrac{4x^2+4xy+y^2-16x^2+4x^2-4xy+y^2}{x\left(2x-y\right)\left(2x+y\right)}\)
\(=\dfrac{-8x^2}{x\left(2x-y\right)\left(2x+y\right)}\)
d) \(\dfrac{1}{1-x}+\dfrac{1}{1+x}+\dfrac{2}{1+x^2}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)
\(=\dfrac{2}{1-x^2}+\dfrac{2}{1+x^2}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)
\(=\dfrac{4}{1-x^4}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)
.....
\(=\dfrac{16}{1-x^{16}}+\dfrac{16}{1+x^{16}}\)
\(=\dfrac{32}{1-x^{32}}\)
c: =>|x-2|+3=-5 hoặc |x-2|+3=5
=>|x-2|=2
=>x-2=2 hoặc x-2=-2
=>x=4 hoặc x=0
\(\dfrac{x-1}{9}+\dfrac{x-2}{8}+\dfrac{x-3}{7}=\dfrac{x-9}{1}+\dfrac{x-8}{2}+\dfrac{x-7}{3}\\ \Leftrightarrow\dfrac{x-1}{9}-1+\dfrac{x-2}{8}-1+\dfrac{x-3}{7}-1=\dfrac{x-9}{1}-1+\dfrac{x-8}{2}-1+\dfrac{x-7}{3}-1\\ \Leftrightarrow\dfrac{x-10}{9}+\dfrac{x-10}{8}+\dfrac{x-10}{7}=\dfrac{x-10}{1}+\dfrac{x-10}{2}+\dfrac{x-10}{3}\\ \Leftrightarrow\left(x-10\right)\left(\dfrac{1}{9}+\dfrac{1}{8}+\dfrac{1}{7}-1-\dfrac{1}{2}-\dfrac{1}{3}\right)=0\Leftrightarrow x-10=0\\ \Leftrightarrow x=10\)
Trừ 2 vế với 1:
\(\Rightarrow\dfrac{x-1}{9}+\dfrac{x-2}{8}+\dfrac{x-3}{7}+3=\dfrac{x-9}{1}+\dfrac{x-8}{2}+\dfrac{x-7}{3}+3\)
\(\Rightarrow\left(\dfrac{x-1}{9}-1\right)+\left(\dfrac{x-2}{8}-1\right)+\left(\dfrac{x-3}{7}-1\right)=\left(\dfrac{x-9}{1}-1\right)+\left(\dfrac{x-8}{2}-1\right)+\left(\dfrac{x-7}{3}-1\right)\)
\(\Rightarrow\left(\dfrac{x-1}{9}-\dfrac{9}{9}\right)+\left(\dfrac{x-2}{8}-\dfrac{8}{8}\right)+\left(\dfrac{x-3}{7}-\dfrac{7}{7}\right)=\left(\dfrac{x-9}{1}-\dfrac{1}{1}\right)+\left(\dfrac{x-8}{2}-\dfrac{2}{2}\right)+\left(\dfrac{x-7}{3}-\dfrac{3}{3}\right)\)
\(\Rightarrow\dfrac{x-10}{9}+\dfrac{x-10}{8}+\dfrac{x-3}{7}=\dfrac{x-10}{1}+\dfrac{x-10}{2}+\dfrac{x-10}{3}\)
\(\Rightarrow\dfrac{x-10}{9}+\dfrac{x-10}{8}+\dfrac{x-10}{7}-\dfrac{x-10}{1}-\dfrac{x-10}{2}-\dfrac{x-10}{3}\)
\(\Rightarrow\left(x-10\right)\left(\dfrac{1}{9}+\dfrac{1}{8}+\dfrac{1}{7}-1-\dfrac{1}{2}-\dfrac{1}{3}\right)=0\)
\(\Rightarrow\left(x-10\right)=0\)
\(\Rightarrow x=10\)
a: \(=\dfrac{x^2+2x+1-x^2+2x-1}{\left(x-1\right)\left(x+1\right)}:\left(\dfrac{1}{x+1}+\dfrac{x}{x-1}+\dfrac{2}{\left(x-1\right)\left(x+1\right)}\right)\)
\(=\dfrac{4x}{\left(x-1\right)\left(x+1\right)}:\dfrac{x-1+x^2+x+2}{\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{4x}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{\left(x-1\right)\left(x+1\right)}{x^2+2x+1}=\dfrac{4x}{x^2+2x+1}\)
b: \(=\dfrac{x+2}{-\left(x-2\right)}\cdot\dfrac{\left(x-2\right)^2}{4x^2}\cdot\left(\dfrac{2}{2-x}-\dfrac{4}{\left(x+2\right)\left(x^2-2x+4\right)}\cdot\dfrac{x^2-2x+4}{2-x}\right)\)
\(=\dfrac{-\left(x+2\right)\left(x-2\right)}{4x^2}\cdot\left(\dfrac{2}{2-x}-\dfrac{4}{\left(x+2\right)\left(2-x\right)}\right)\)
\(=\dfrac{-\left(x+2\right)\left(x-2\right)}{4x^2}\cdot\dfrac{2x+4-4}{\left(2-x\right)\left(x+2\right)}\)
\(=\dfrac{2x}{4x^2}=\dfrac{1}{2x}\)
\(\Leftrightarrow8\left(x+\dfrac{1}{x}\right)^2+4\left(x^2+\dfrac{1}{x^2}\right)\left[\left(x^2+\dfrac{1}{x^2}\right)-\left(x+\dfrac{1}{x}\right)^2\right]=\left(x+4\right)^2\)
\(\Leftrightarrow8\left(x+\dfrac{1}{x}\right)^2+4.\left(x^2+\dfrac{1}{x^2}\right)\left[-2\right]=\left(x+4\right)^2\)
\(\Leftrightarrow8\left[\left(x+\dfrac{1}{x}\right)^2-\left(x^2+\dfrac{1}{x^2}\right)\right]=\left(x+4\right)^2\)
\(x\ne0\Leftrightarrow\left(x+4\right)^2=16\Rightarrow\left[{}\begin{matrix}x+4=4;x=0\left(l\right)\\x+4=-4x;x=-8\end{matrix}\right.\)
Bước 1: Tìm số hạng tổng quát của mỗi cấp số nhân
Số hạng tổng quát:
aₙ = a₁ * r₁^(n-1) = 1 * 1.51^(n-1)Số hạng tổng quát:
aₙ = a₁ * r₂^(n-1) = 1 * 2.52^(n-1)Bước 2: Tính tổng n số hạng đầu tiên của mỗi cấp số nhân
Bước 3: Đặt S₁ = S₂ và giải phương trình
1 * (1 - 1.51^n) / (1 - 1.51) = 1 * (1 - 2.52^n) / (1 - 2.52) (1 - 1.51^n) / (1 - 1.51) = (1 - 2.52^n) / (1 - 2.52)Nhân chéo:
(1 - 1.51^n) * (1 - 2.52) = (1 - 2.52^n) * (1 - 1.51) 1 - 2.52 + 2.52 * 1.51^n = 1 - 1.51 + 1.51 * 2.52^n 1.51 * 2.52^n - 1.51 * 1.51^n = 1 - 2.52 1.51^n * (2.52 - 1.51) = 1 - 2.52 1.51^n = (1 - 2.52) / (2.52 - 1.51) 1.51^n = -1.52 / 1.01Lấy logarit cơ số 1.51 của cả hai vế:
n * log₁.₅₁(-1.52 / 1.01) = log₁.₅₁(-1.52 / 1.01) n = log₁.₅₁(-1.52 / 1.01) / log₁.₅₁(-1.52 / 1.01) n = 1Vậy, n = 1.
21:48:20, 2/5/2024cái bạn giải cho mình là kiến thức lớp 8 à :))