Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{5}{x^2}-2x+2-\frac{8}{x^2}-2x+5=3\)
\(=>\left(\frac{5}{x^2}-\frac{8}{x^2}\right)-\left(2x+2x\right)+\left(2+5-3\right)=0\)\(=>-\frac{3}{x^2}-4x+4=0\)\(=>-3-4x^3+4x^2=0\) chịu :v
\(\frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{\left(2x-2\right).2x}=\frac{1}{8}\)
\(\Rightarrow\frac{1}{2}\left(\frac{2}{2.4}+\frac{2}{4.6}+...+\frac{2}{\left(2x-2\right).2x}\right)=\frac{1}{8}\)
\(\Rightarrow\frac{1}{2}\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{2x-2}-\frac{1}{2x}\right)=\frac{1}{8}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{2x}=\frac{1}{4}\)
\(\Rightarrow\frac{1}{2x}=\frac{1}{4}\Rightarrow2x=4\Rightarrow x=2\)
a, \(\left|9+x\right|=2x\)
\(\Leftrightarrow\orbr{\begin{cases}9+x=2x\\9+x=-2x\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}9=2x-x\\9=-2x-x\end{cases}\Leftrightarrow\orbr{\begin{cases}9=x\\9=-3x\end{cases}}}\)
\(\Rightarrow\orbr{\begin{cases}x=9\\x=-3\end{cases}}\)
b, \(\left|5x\right|-3x=2\)
\(\Leftrightarrow\orbr{\begin{cases}5x-3x=2\\5x-3x=-2\end{cases}}\Leftrightarrow\orbr{\begin{cases}2x=2\\2x=-2\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=-1\end{cases}}\)
\(a,2.\left(2x-7\right)^2=18\)
\(\Rightarrow\left(2x-7\right)^2=18:2\)
\(\Rightarrow\left(2x-7\right)^2=9\)
\(\Rightarrow\left(2x-7\right)^2=3^2\)
\(\Rightarrow2x=3+7\)
\(\Rightarrow2x=10\)
\(\Rightarrow x=10:2\)
\(x=5\)
\(b,3^{2x}=81\)
\(\Rightarrow3^{2x}=3^4\)
\(\Rightarrow2x=4\)
\(\Rightarrow x=4:2\)
\(\Rightarrow x=2\)
a) Ta có: 3x = 2y => \(\frac{x}{2}=\frac{y}{3}\) => \(\frac{x}{10}=\frac{y}{15}\)
7y = 5z => \(\frac{y}{5}=\frac{z}{7}\) => \(\frac{y}{15}=\frac{z}{21}\)
=> \(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)
=> \(\hept{\begin{cases}\frac{x}{10}=2\\\frac{y}{15}=2\\\frac{z}{21}=2\end{cases}}\) => \(\hept{\begin{cases}x=2.10=20\\y=2.15=30\\z=2.21=42\end{cases}}\)
Vậy ...
b) Tương tự câu trên
c) Ta có: \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\) => \(\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}=\frac{x+y+z}{\frac{3}{2}+\frac{4}{3}+\frac{5}{4}}=\frac{49}{\frac{49}{12}}=12\)
=> \(\hept{\begin{cases}\frac{x}{\frac{3}{2}}=12\\\frac{y}{\frac{4}{3}}=12\\\frac{z}{\frac{5}{4}}=12\end{cases}}\) => \(\hept{\begin{cases}x=12\cdot\frac{3}{2}=18\\y=12\cdot\frac{4}{3}=16\\z=12\cdot\frac{5}{4}=15\end{cases}}\)
Vậy ....
d) HD : Ta có: \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\) => \(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}\)
(Sau đó áp dụng t/c của dãy tỉ số bằng nhau rồi làm tương tự như trên)
e) HD: Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\) => x = 2k; y = 3k; z = 5k (*)
Thay x = 2k; y = 3k ; z = 5k vào xyz = 810 => tìm k => thay k ngược lại vào (*)
Nếu ko hiểu cứ hỏi t
b,Sửa đề : \(\frac{x}{3}=\frac{y}{4};\frac{y}{2}=\frac{z}{5}\)\(2x-3y+z=6\)
Ta có : \(\frac{x}{3}=\frac{y}{4}\Leftrightarrow\frac{x}{6}=\frac{y}{8}\)(*)
\(\frac{y}{2}=\frac{z}{5}\Leftrightarrow\frac{y}{8}=\frac{z}{20}\)(**)
Từ (*);(**) \(\Rightarrow\frac{x}{6}=\frac{y}{8}=\frac{z}{20}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{6}=\frac{y}{8}=\frac{z}{20}=\frac{2x-3y+z}{2.6-3.8+20}=\frac{49}{8}\)
\(x=36,75;y=49;z=122,5\)
2x +1/2=-3
2x=(-3)-1/2
2x=-2,5
x= (-2,5)÷2
x=-1,25
còn lại mk chịu
Cbht
=2(x-1)
-4