Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\frac{n+19}{n-2}=\frac{n-2+21}{n-2}=1+\frac{21}{n-2}\)
Để phân số tối giản thì: \(\frac{21}{n-2}\in Z\)
\(\Rightarrow21⋮n-2\)
\(\Rightarrow n-2\inƯ\left(21\right)=\left\{1;-1;3;-3;7;-7;21;-21\right\}\)
\(\Rightarrow n\in\left\{3;1;5;-1;9;-5;23;-19\right\}\)
bài 2:137x137x=137x*10 000+137x
=137x*10 001
Ta thấy 10 001 ko chia hết 13
=>137x chia hết 13 mà 13 chia hết 13 nên 7x chia hết 13
=>x=8
\(\frac{8a+19}{4a+1}=\frac{2\left(4a+1\right)+17}{4a+1}=\frac{2\left(4a+1\right)}{4a+1}+\frac{17}{4a+1}=2+\frac{17}{4a+1}\in Z\)
=>17 chia hết 4a+1
=>4a+1\(\in\){1,-1,17,-17}
=>a\(\in\){0;-0,5;-4;5;4}
a. Ta tách \(\frac{8a+19}{4a+1}=\frac{\left(8a+2\right)+17}{4a+1}=2+\frac{17}{4a+1}\)
Để biểu thức trên có giá trị nguyên thì \(4a+1\inƯ\left(17\right)=\left\{-1;1;17;-17\right\}\)
Do a là số tự nhiên nên \(a\in\left\{0;4\right\}\)
b. Ta bổ sung là biểu thức có giá trị nguyên lớn nhất:
Gọi \(A=\frac{5a-17}{4a-23}\). A nguyên thì 4A cũng nguyên, hay \(\frac{20a-68}{4a-23}\in Z.\)
\(\frac{20a-68}{4a-23}=5+\frac{47}{4a-23}\)
Vậy thì \(4a-23\inƯ\left(47\right)=\left\{-1;1;47;-47\right\}\)
Do a là số tự nhiên nên \(a=6\)
Với a = 6, A = 13 là giá trị nguyên lớn nhất.
a) \(\frac{8a+19}{4a+1}\)CÓ GIÁ TRỊ NGUYÊN
\(\Rightarrow8a+19⋮4a+1\Rightarrow2\left(4a+1\right)+17⋮4a+1\)
\(\Rightarrow17⋮4a+1\Rightarrow4a+1\inƯ\left(17\right)=\left[\pm1;\pm17\right]\)
\(\Rightarrow\)\(4a+1=\)\(1\)\(\Rightarrow\)\(a\)\(=0\)(TM).
\(\Rightarrow\)\(4a+1=\)\(-1\)\(\Rightarrow\)\(a\)\(=\frac{-2}{4}\)(LOẠI).
\(\Rightarrow\)\(4a+1=\)\(17\)\(\Rightarrow\)\(a\)\(=6\)(TM).
\(\Rightarrow\)\(4a+1=\)\(-17\)\(\Rightarrow\)\(a\)\(=\frac{-9}{2}\)(LOẠI).
VẬY \(a\)\(=0\)HOẶC \(a=6\)
1/a) Ta có: \(A=x^4+\left(y-2\right)^2-8\ge-8\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x=0\\y-2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=0\\y=2\end{cases}}\)
Vậy GTNN của A = -8 khi x=0, y=2.
b) Ta có: \(B=|x-3|+|x-7|\)
\(=|x-3|+|7-x|\ge|x-3+7-x|=4\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x\ge3\\x\le7\end{cases}}\Rightarrow3\le x\le7\)
Vậy GTNN của B = 4 khi \(3\le x\le7\)
2/ a) Ta có: \(xy+3x-7y=21\Rightarrow xy+3x-7y-21=0\)
\(\Rightarrow x\left(y+3\right)-7\left(y+3\right)=0\Rightarrow\left(x-7\right)\left(y+3\right)=0\)
\(\Rightarrow\hept{\begin{cases}x=7\\y=-3\end{cases}}\)
b) Ta có: \(\frac{x+3}{y+5}=\frac{3}{5}\)và \(x+y=16\)
Áp dụng tính chất bằng nhau của dãy tỉ số, ta có:
\(\frac{x+3}{y+5}=\frac{3}{5}\Rightarrow\frac{x+3}{3}=\frac{y+5}{5}=\frac{x+y+8}{8}=\frac{16+8}{8}=\frac{24}{8}=3\)
\(\Rightarrow\hept{\begin{cases}\frac{x+3}{3}=3\Rightarrow x+3=9\Rightarrow x=6\\\frac{y+5}{5}=3\Rightarrow y+5=15\Rightarrow y=10\end{cases}}\)
Bài 3: đề không rõ.
Bài 1:\(a,A=x^4+\left(y-2\right)^2-8\)
Có \(x^4\ge0;\left(y-2\right)^2\ge0\)
\(\Rightarrow A\ge0+0-8=-8\)
Dấu "=" xảy ra khi \(MinA=-8\Leftrightarrow x=0;y=2\)
\(b,B=\left|x-3\right|+\left|x-7\right|\)
\(\Rightarrow B=\left|x-3\right|+\left|7-x\right|\)
\(\Rightarrow B\ge\left|x-3+7-x\right|\)
\(\Rightarrow B\ge\left|-10\right|=10\)
Dấu "=" xảy ra khi \(MinB=10\Leftrightarrow3\le x\le7\Rightarrow x\in\left(3;4;5;6;7\right)\)
bài 1:
A = 9999933 . 9999932020 - 5555571 . 5555572020
= 9999933 . (9999934)505 - 5555571 . (5555574)505
= ...7 . ...1 - ...7 . ...1
= ...7 - ...7
= ...0 chia hết cho 5
...7 là có chũ số tậm cùng bằng 7