Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{256}\)
\(A=\frac{1}{2^3}+\frac{1}{2^4}+\frac{1}{2^5}+\frac{1}{2^6}+\frac{1}{2^7}+\frac{1}{2^8}\)
\(2A=\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+\frac{1}{2^5}+\frac{1}{2^6}+\frac{1}{2^7}\)
\(2A-A=\left(\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+\frac{1}{2^5}+\frac{1}{2^6}+\frac{1}{2^7}\right)-\left(\frac{1}{2^3}+\frac{1}{2^4}+\frac{1}{2^5}+\frac{1}{2^6}+\frac{1}{2^7}+\frac{1}{2^8}\right)\)
\(A=\frac{1}{2^2}-\frac{1}{2^8}\)
\(A=\frac{1}{4}-\frac{1}{256}=\frac{63}{256}\)
\(\Rightarrow\frac{63}{256}.x=\frac{1}{512}=\frac{1}{2^9}\)
\(\Rightarrow\frac{63}{2^8}.x=\frac{1}{2^9}\)
\(\Rightarrow x=\frac{1}{2^9}:\frac{63}{2^8}=\frac{1}{2^9}.\frac{2^8}{63}=\frac{1}{2.63}=\frac{1}{126}\)
Ủng hộ mk nha !!! ^_^
#)Giải :
\(\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{256}+\frac{1}{512}\)
\(=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}+\frac{1}{8}-\frac{1}{16}+...+\frac{1}{256}-\frac{1}{512}\)
\(=\frac{1}{2}-\frac{1}{512}\)
\(=\frac{255}{512}\)
Lời giải
\(=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}+\frac{1}{8}-\frac{1}{16}+...+\frac{1}{256}-\frac{1}{512}\)
\(=\frac{1}{2}-\frac{1}{512}\)
\(=\frac{255}{512}\)
\(B=\frac{6}{1\cdot3}+\frac{6}{3\cdot5}+\cdot\cdot\cdot+\frac{6}{97\cdot99}\)
\(\Rightarrow B=3\cdot\left(\frac{2}{1\cdot3}+\cdot\cdot\cdot+\frac{2}{97\cdot99}\right)\)
\(\Rightarrow B=3\cdot\left(1-\frac{1}{3}+\cdot\cdot\cdot+\frac{1}{97}-\frac{1}{99}\right)\)
\(\Rightarrow B=3\cdot\left(1-\frac{1}{99}\right)\)
\(\Rightarrow B=3\cdot\frac{98}{99}\)
\(\Rightarrow B=\frac{98}{33}\)
\(A=\frac{1}{2}+\frac{1}{6}+\cdot\cdot\cdot+\frac{1}{42}\)
\(\Rightarrow A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\cdot\cdot\cdot+\frac{1}{6\cdot7}\)
\(\Rightarrow A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\cdot\cdot\cdot+\frac{1}{6}-\frac{1}{7}\)
\(\Rightarrow A=1-\frac{1}{7}\)
\(\Rightarrow A=\frac{6}{7}\)
Đặt A = 1 + 2 + 4 + 8 + ..... + 1024
=> 2A = 2 + 4 + 8 + ..... + 2048
=> 2A - A = 2048 - 1
=> A = 2047
Đặt A = 1 + 2 + 4 + 8 + ... + 1024
=> 2A = 2 + 4 + 8 + ... + 2048
=> 2A - A = 2048 - 1
=> 2A = 2047
Chuẩn chuẩn. :)
\(A=\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{160^2}=\frac{1}{4}\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{80^2}\right)\)
+) \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{80^2}>\frac{1}{4}+\left(\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{80}.\frac{1}{81}\right)\)
\(=\frac{1}{4}+\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{80}-\frac{1}{81}\right)\)
\(=\frac{1}{4}+\frac{1}{3}-\frac{1}{81}>\frac{1}{4}+\frac{1}{3}-\frac{1}{12}=\frac{1}{2}\)
=> \(A=\frac{1}{4}\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{80^2}\right)>\frac{1}{4}.\frac{1}{2}=\frac{1}{8}\)
+) \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{80^2}< \frac{1}{4}+\left(\frac{1}{3.2}+\frac{1}{4.3}+...+\frac{1}{80.79}\right)\)
\(=\frac{1}{4}+\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{79}-\frac{1}{80}\right)\)
\(=\frac{1}{4}+\frac{1}{2}-\frac{1}{80}< \frac{3}{4}\)
=> \(A=\frac{1}{4}\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{80^2}\right)< \frac{1}{4}.\frac{3}{4}=\frac{3}{16}\)
Đặt : \(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+.....+\frac{1}{128}+\frac{1}{256}\)
\(\Rightarrow2A=1+\frac{1}{2}+\frac{1}{4}+.....+\frac{1}{128}\)
\(\Rightarrow2A-A=1-\frac{1}{256}\)
\(\Rightarrow A=\frac{255}{256}\)