Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bn vào olm.vn ik trong đấy có câu trả lời đấy!
gợi ý cho bn r đó nha !
nhớ like cho mik đấy!
Ta có \(m=\dfrac{3^p-1}{2}\cdot\dfrac{3^p+1}{4}=ab\) với \(\left(a;b\right)=\left(\dfrac{3^p-1}{2};\dfrac{3^p+1}{4}\right)\)
Vì \(a,b\) là các số nguyên lớn hơn 1 nên m là hợp số
Mà \(m=9^{p-1}+9^{p-2}+...+9+1\) và p lẻ nên \(m\equiv1\left(mod3\right)\)
Theo định lí Fermat, ta có \(\left(9^p-9\right)⋮p\)
Mà \(\left(p,8\right)=1\Rightarrow\left(9^p-9\right)⋮8p\Rightarrow m-1⋮\dfrac{9^p-9}{8}⋮p\)
Vì \(\left(m-1\right)⋮2\Rightarrow\left(m-1\right)⋮2p\Rightarrow\left(3^{m-1}-1\right)⋮\left(3^{2p}-1\right)⋮\dfrac{9^p-1}{8}=m\left(đpcm\right)\)
Bạn đúng nhé .
Vì ví dụ 1 ngày = 24 h
Mà chơi 1 tiếng thì học còn 23 tiếng
2 tiếng thì họ còn 22 tiếng .......
=> Bạn AN nói very chuẩn.
Đặt �=�+1,�=�+2,�=�+3p=x+1,q=y+2,r=z+3, bài toán trở thành:
���=4(�−1)(�−2)(�−3)pqr=4(p−1)(q−
853 là số nguyên tố
dễ mà
853 là số nguyên tố vì nó không chia hết cho số nào khác ngoài 1 và chính nó.