Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(R=x\sqrt{3-x^2}\le\frac{x^2+3-x^2}{2}=\frac{3}{2}\)
đạt được khi \(x=\sqrt{\frac{3}{2}}\)
ĐK : \(x\ge0\) và \(x\ne1\)
\(A=\dfrac{\sqrt{x}+1}{x-1}-\dfrac{x+2}{x\sqrt{x}-1}-\dfrac{\sqrt{x}+1}{x+\sqrt{x}+1}\)
\(=\dfrac{1}{\sqrt{x}-1}-\dfrac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\dfrac{\sqrt{x}+1}{x+\sqrt{x}+1}\)
\(=\dfrac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\dfrac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(=\dfrac{x+\sqrt{x}+1-x-2-x+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(=\dfrac{-x\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(=\dfrac{-\sqrt{x}}{x+\sqrt{x}+1}\)
Ta có : \(\dfrac{2}{A}+\sqrt{x}=\dfrac{-2x-2\sqrt{x}-2}{\sqrt{x}}+\sqrt{x}\)
\(=\dfrac{-x-2\sqrt{x}-2}{\sqrt{x}}=-\sqrt{x}-2-\dfrac{2}{\sqrt{x}}=-\left(\sqrt{x}+\dfrac{2}{\sqrt{x}}+2\right)\)
Theo BĐT Cô - si ta có : \(\sqrt{x}+\dfrac{2}{\sqrt{x}}\ge2\sqrt{2}\)
\(\Leftrightarrow\sqrt{x}+\dfrac{2}{\sqrt{x}}+2\ge2\sqrt{2}+2\)
\(\Leftrightarrow-\left(\sqrt{x}+\dfrac{2}{\sqrt{x}}+2\right)\le-2\sqrt{2}-2\)
Vậy GTLN của Q là \(-2\sqrt{2}-2\) . Dấu \("="\) xảy ra khi \(x=2\)
b) Với \(x\ge0;x\ne9\)
P = \(\dfrac{\sqrt{x}+4}{\sqrt{x}+2}\) = 1+\(\dfrac{2}{\sqrt{x}+2}\)
Vì x\(\ge0\) \(\Rightarrow\sqrt{x}\ge0\Rightarrow\sqrt{x}+2\ge2\Rightarrow\dfrac{2}{\sqrt{x}+2}\le1\)
\(\Rightarrow P=1+\dfrac{2}{\sqrt{x}+2}\le2\)
Dấu "=" xảy ra \(\Leftrightarrow x=0\) ( Thỏa mãn ĐKXĐ )
Vậy GTLN của P=2 \(\Leftrightarrow x=0\)
a) \(P=\dfrac{1}{\sqrt{x}+2}-\dfrac{5}{x-\sqrt{x}-6}-\dfrac{\sqrt{x}-2}{3-\sqrt{x}}\) với \(x\ge0;x\ne9\)
\(\Rightarrow P=\dfrac{\sqrt{x}-3}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}-\dfrac{5}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}+\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}\)=\(\dfrac{\sqrt{x}-3-5+\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}\)
= \(\dfrac{x+\sqrt{x}-12}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}\)
= \(\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+4\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}\)
= \(\dfrac{\sqrt{x}+4}{\sqrt{x}+2}\)
a) điều kiện : \(x\ge0;x\ne1\)
ta có : \(Q=\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}+1}{x+\sqrt{x}+1}-\dfrac{1}{\sqrt{x}-1}\)
\(\Leftrightarrow Q=\dfrac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\dfrac{\sqrt{x}+1}{x+\sqrt{x}+1}-\dfrac{1}{\sqrt{x}-1}\)
\(\Leftrightarrow Q=\dfrac{x+2+\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)-\left(x+\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(\Leftrightarrow Q=\dfrac{x+2+x-1-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}=\dfrac{x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)\(\Leftrightarrow Q=\dfrac{\left(\sqrt{x}\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}=\dfrac{\sqrt{x}}{x+\sqrt{x}+1}\)
b) thế \(x=9\) vào \(Q\) ta có : \(Q=\dfrac{\sqrt{9}}{9+\sqrt{9}+1}=\dfrac{3}{13}\)
c) ta có : \(Q=\dfrac{\sqrt{x}}{x+\sqrt{x}+1}\Leftrightarrow\sqrt{x}=Q\left(x+\sqrt{x}+1\right)\)
\(\Leftrightarrow Qx+\left(Q-1\right)\sqrt{x}+Q=0\)
vì phương trình này luôn có nghiệm \(\Rightarrow\Delta\ge0\)
\(\Rightarrow\left(Q-1\right)^2-4Q^2\ge0\Leftrightarrow Q^2-2Q+1-4Q^2\ge0\)
\(\Leftrightarrow\left(Q+1\right)\left(1-3Q\right)\ge0\) \(\Leftrightarrow-1\le Q\le\dfrac{1}{3}\)
\(\Rightarrow Q_{max}=\dfrac{1}{3}\) dấu "=" xảy ra khi \(\sqrt{x}=\dfrac{1-Q}{2Q}=\dfrac{1-\dfrac{1}{3}}{\dfrac{2}{3}}=1\Leftrightarrow x=1\)
\(\Rightarrow Q_{min}=-1\) dấu "=" xảy ra khi \(\sqrt{x}=\dfrac{1-Q}{2Q}=\dfrac{1+1}{-2}=-1\left(loại\right)\)nhận xét : ta thấy \(Q=\dfrac{\sqrt{x}}{x+\sqrt{x}+1}\ge0\)
\(\Rightarrow Q_{min}=0\) dấu "=" xảy ra khi \(\sqrt{x}=0\Leftrightarrow x=0\)
vậy \(Q_{min}=0\) khi \(x=0\) ; \(Q_{max}=\dfrac{1}{3}\) khi \(x=1\)
Ê ông ơi . Ban đầu là điều kiện \(x\ne1\) rồi mà sao câu c khi \(x=1\)
được hả ?
Ta có:
\(x-5\sqrt{x}+7=x-5\sqrt{x}+\dfrac{5}{4}+\dfrac{23}{4}=\left(\sqrt{x}-\dfrac{5}{2}\right)^2+\dfrac{23}{4}\)
Ta thấy:
\((\sqrt{x}-\dfrac{5}{2})^2\ge0\forall x\)
\(\Leftrightarrow\left(\sqrt{x}-\dfrac{5}{2}\right)^2+\dfrac{23}{4}\ge\dfrac{23}{4}\)
\(\Leftrightarrow\dfrac{1}{\left(\sqrt{x}-\dfrac{5}{2}\right)^2+\dfrac{23}{4}}\le\dfrac{1}{\dfrac{23}{4}}=\dfrac{4}{23}\)
hay \(P\le\dfrac{4}{23}\)
Dấu "=" xảy ra \(\Leftrightarrow\sqrt{x}-\dfrac{5}{2}=0\)
\(\Leftrightarrow\sqrt{x}=\dfrac{5}{2}\)
\(\Leftrightarrow x=\dfrac{25}{4}\)
Vậy Max P = \(\dfrac{4}{23}\) tại \(x=\dfrac{25}{4}\)
Biểu thức đã cho lớn nhất khi x + √x + 1 nhỏ nhất
ĐKXĐ: x ≥ 0
⇒ x + √x + 1 ≥ 1
⇒ x + √x + 1 nhỏ nhất là 1 khi x = 0
Vậy giá trị lớn nhất của biểu thức đã cho là 5/1 = 5 khi x = 0
Biểu thức đã cho lớn nhất khi x + √x + 1 nhỏ nhất
ĐKXĐ: x ≥ 0
⇒ x + √x + 1 ≥ 1
⇒ x + √x + 1 nhỏ nhất là 1 khi x = 0
Vậy giá trị lớn nhất của biểu thức đã cho là 5/1 = 5 khi x = 0