Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{3}{\left(x+2\right)^2+4};\left(x+2\right)^2\in N\)
\(\Rightarrow A_{max}\Leftrightarrow\left(x+2\right)^2=0\Leftrightarrow\left(x+2\right)^2+4=4\)
\(\Rightarrow A_{max}=\frac{3}{4}\)
b, \(B=\left(x+1\right)^2+\left(y+3\right)^2+1\)
Mặt khác: \(\left(x+1\right)^2;\left(y+3\right)^2\in N\Rightarrow\left(x+1\right)^2+\left(y+3\right)^2\ge0\)
\(\Rightarrow B_{min}\Leftrightarrow\left(x+1\right)^2+\left(y+3\right)^2=0\Rightarrow B_{min}=1\)
\(A=\frac{3}{\left(x+2\right)^2+4}\)
Để A max
=>(x+2)^2+4 min
Mà\(\left(x+2\right)^2\ge0\Rightarrow\left(x+2\right)^2+4\ge4\)
Vậy Min = 4 <=>x=-2
Vậy Max A = 3/4 <=> x=-2
\(b,B=\left(x+1\right)^2+\left(y+3\right)^2+1\)
Có \(\left(x+1\right)^2\ge0;\left(y+3\right)^2\ge0\)
\(\Rightarrow B\ge0+0+1=1\)
Vậy MinB = 1<=>x=-1;y=-3
a: \(\left|x\right|-1\ge-1\)
\(\Leftrightarrow A=\dfrac{5}{\left|x\right|-1}\le-5\)
Dấu '=' xảy ra khi x=0
c: \(x^2+3\left|y-2\right|-7\ge-7\)
Dấu '=' xảy ra khi x=0 và y=2
a)\(\left(x-2\right)^2-1\)
Dễ thấy:\(\left(x-2\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-2\right)^2-1\ge-1\forall x\)
Đẳng thức xảy ra khi \(x=2\)
b)\(\left(x^2-9\right)^2+\left|y-2\right|+10\)
Dễ thấy: \(\left\{{}\begin{matrix}\left(x^2-9\right)^2\ge0\\\left|y-2\right|\ge0\end{matrix}\right.\)
\(\Rightarrow\left(x^2-9\right)^2+\left|y-2\right|\ge0\)
\(\Rightarrow\left(x^2-9\right)^2+\left|y-2\right|+10\ge10\)
Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}x^2-9=0\\y-2=0\end{matrix}\right.\)\(\left\{{}\begin{matrix}x=\pm3\\y=2\end{matrix}\right.\)
c)\(\dfrac{3}{\left(x-2\right)^2+5}\)
Dễ thấy:
\(\left(x-2\right)^2\ge0\forall x\Rightarrow\left(x-2\right)^2+5\ge5\)
\(\Rightarrow\dfrac{1}{\left(x-2\right)^2+5}\le\dfrac{1}{5}\Rightarrow\dfrac{3}{\left(x-2\right)^2+5}\le\dfrac{3}{5}\)
Đẳng thức xảy ra khi \(x-2=0\Rightarrow x=2\)
d)\(-10-\left(x-30\right)^2-\left|y-5\right|\)
Dễ thấy: \(\left\{{}\begin{matrix}\left(x-30\right)^2\ge0\\\left|y-5\right|\ge0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}-\left(x-30\right)^2\le0\\-\left|y-5\right|\le0\end{matrix}\right.\)
\(\Rightarrow-\left(x-30\right)^2-\left|y-5\right|\le0\)
\(\Rightarrow10-\left(x-30\right)^2-\left|y-5\right|\le10\)
Đẳng thức xảy ra khi \(\Rightarrow\left\{{}\begin{matrix}-\left(x-30\right)^2=0\\-\left|y-5\right|=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=30\\y=5\end{matrix}\right.\)
a) \(\left(x-2\right)^2\ge0\Rightarrow\left(x-2\right)^2-1\ge-1\)
Dấu "=" xảy ra khi \(\left(x-2\right)^2=0\)
\(\Rightarrow x=2\)
Vậy GTNN của bt = -1 khi x = 2.
b) \(\left(x^2-9\right)^2\ge0;\left|y-2\right|\ge0\)
\(\Rightarrow\left(x^2-9\right)^2+\left|y-2\right|\ge0\)
\(\Rightarrow\left(x^2-9\right)^2+\left|y-2\right|+10\ge10\)
Dấu "=" xảy ra khi \(\left(x^2-9\right)^2=0;\left|y-2\right|=0\)
\(\Rightarrow\left\{{}\begin{matrix}x=\pm3\\y=2\end{matrix}\right.\)
Vậy GTNN của bt = 10 khi ...
c) Vì \(\left(x-2\right)^2\ge0\Rightarrow\left(x-2\right)^2+5\ge5\)
\(\Rightarrow\dfrac{3}{\left(x-2\right)^2+5}\ge\dfrac{3}{5}\)
Dấu "=" xảy ra khi \(\left(x-2\right)^2=0\)
\(\Rightarrow x=2\)
Vậy GTNN của bt = \(\dfrac{3}{5}\) khi x = 2.
Trước hết thế đã.
Ta có
|x−2010|\(\ge\)0 với mọi x
=>2012-|x−2010|\(\ge\)2012 với mọi x
=>C\(\ge\)\(\dfrac{1}{2012}\)với mọi x
Dấu bằng xảy ra <=>|x−2010|=0
<=>x-2012=0
<=>x=2012
Vậy Cmin=\(\dfrac{1}{2012}\)<=>x=2012
a: \(\left(x-2\right)^2>=0\)
\(\left|y-x\right|>=0\)
Do đó: \(\left(x-2\right)^2+\left|y-x\right|>=0\forall x,y\)
=>\(\left(x-2\right)^2+\left|y-x\right|+3>=3\forall x,y\)
=>A>=3 với mọi x,y
Dấu = xảy ra khi x-2=0 và y-x=0
=>x=2=y
b: \(\left|x+5\right|>=0\)
=>\(\left|x+5\right|+5>=5\)
=>B>=5 với mọi x
Dấu = xảy ra khi x+5=0
=>x=-5
c: \(\left|x-2010\right|>=0\)
=>\(-\left|x-2010\right|< =0\)
=>\(-\left|x-2010\right|+2012< =2012\)
=>\(C=\dfrac{2011}{2012-\left|x-2010\right|}>=\dfrac{2011}{2012}\forall x\)
Dấu = xảy ra khi x=2010
a) Ta có:
\(A=\left(x-2\right)^2+\left|y-x\right|+3\)
Mà: \(\left\{{}\begin{matrix}\left(x-2\right)^2\ge0\\\left|y-x\right|\ge0\end{matrix}\right.\)
\(\Rightarrow A=\left(x-2\right)^2+\left|y-x\right|+3\ge3\)
Dấu "=" xảy ra khi:
\(\left\{{}\begin{matrix}x-2=0\\y-x=0\end{matrix}\right.\)
\(\Rightarrow x=y=2\)
Vậy: \(A_{min}=3\Leftrightarrow x=y=2\)
b) Ta có:
\(B=\left|x+5\right|+5\)
Mà: \(\left|x+5\right|\ge0\)
\(\Rightarrow B=\left|x+5\right|+5\ge5\)
Dấu "=" xảy ra:
\(x+5=0\Rightarrow x=-5\)
Vậy: \(B_{min}=5\Leftrightarrow x=-5\)
c) Ta có:
\(C=\dfrac{2011}{2012-\left|x-2010\right|}\)
Mà: \(\left|x-2010\right|\ge0\)
\(\Rightarrow C=\dfrac{2011}{2012-\left|x-2010\right|}\ge\dfrac{2011}{2012}\)
Dấu "=" xảy ra khi:
\(x-2010=0\Rightarrow x=2010\)
Vậy: \(C_{min}=\dfrac{2011}{2012}\Leftrightarrow x=2010\)