K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 11 2017

Nếu có thể, mình sẽ giúp but......

Thôi cố gắng lên nha🙆🙅

12 tháng 10 2019

\(\Leftrightarrow\sqrt{\left(\sqrt{x}+1\right)^2}-\sqrt{\left(\sqrt{x}-1\right)^2}=2\)

\(\Leftrightarrow\left|\sqrt{x}+1\right|-\left|\sqrt{x}-1\right|=2\)

Xét TH , làm nốt!

19 tháng 3 2019

\(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}=0\)=0

\(\Leftrightarrow\)\(\sqrt{\left(x-1\right)+2\sqrt{x-1}+1}+\sqrt{\left(x-1\right)-2\sqrt{x-1}+1}=0\)

\(\Leftrightarrow\)\(\sqrt{\left(\sqrt{x-1}+1\right)^2}+\sqrt{\left(\sqrt{x-1}-1\right)^2}=0\)

\(\Leftrightarrow\)\(\sqrt{x-1}+1+\sqrt{x-1}-1=0\)

\(\Leftrightarrow\)\(\sqrt{x-1}+\sqrt{x-1}=0\)

\(\Leftrightarrow\)\(\sqrt{x-1}=\sqrt{x-1}\)

\(\Leftrightarrow\)\(x-1=x-1\)

\(\Leftrightarrow\)\(x-x=1-1\)

\(\Leftrightarrow\)\(0x=0\)(luôn đúng)

Vậy phương trình có nghiệm \(x\in R\)

19 tháng 3 2019

Đặng Nguyễn Thục Anh phá căn sai nhé !

 \(\sqrt{\left(\sqrt{x-1}-1\right)^2}=\left|\sqrt{x-1}-1\right|\) đến đây xét 2 trường hợp là xong

P/S: nhớ thêm ĐKXĐ ak

24 tháng 9 2016

1) đặt đk rùi bình phương 2 vế là ok

2) \(pt\Leftrightarrow\frac{\sqrt{x}-\sqrt{x+2}}{x-x-2}+\frac{\sqrt{x+2}-\sqrt{x+4}}{x+2-x-4}+\frac{\sqrt{x+4}-\sqrt{x+6}}{x+4-x-6}=\frac{\sqrt{10}}{2}-1\)(ĐKXĐ : \(x\ge0\))

<=> \(\frac{\sqrt{x}-\sqrt{x+6}}{-2}=\frac{\sqrt{10}}{2}-1\)

<=> \(\frac{\sqrt{x+6}-\sqrt{x}}{2}=\frac{\sqrt{10}-2}{2}\)

<=> \(\sqrt{x+6}-\sqrt{x}=\sqrt{10}-2\)

<=> \(\sqrt{x+6}+2=\sqrt{10}+\sqrt{x}\)

đến đây bình phương 2 vế rùi giải bình thường nhé 

31 tháng 10 2016

Bài 1:

Đặt \(\hept{\begin{cases}S=x+y\\P=xy\end{cases}}\) hpt thành:

\(\hept{\begin{cases}S^2-P=3\\S+P=9\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}S^2-P=3\\S=9-P\end{cases}}\Leftrightarrow\left(9-P\right)^2-P=3\)

\(\Leftrightarrow\orbr{\begin{cases}P=6\Rightarrow S=3\\P=13\Rightarrow S=-4\end{cases}}\).Thay 2 trường hợp S và P vào ta tìm dc

\(\hept{\begin{cases}x=3\\y=0\end{cases}}\)\(\hept{\begin{cases}x=0\\y=3\end{cases}}\)

1 tháng 11 2016

Câu 3: ĐK: \(x\ge0\)

Ta thấy \(x-\sqrt{x-1}=0\Rightarrow x=\sqrt{x-1}\Rightarrow x^2-x+1=0\) (Vô lý), vì thế \(x-\sqrt{x-1}\ne0.\)

Khi đó \(pt\Leftrightarrow\frac{3\left[x^2-\left(x-1\right)\right]}{x+\sqrt{x-1}}=x+\sqrt{x-1}\Rightarrow3\left(x-\sqrt{x-1}\right)=x+\sqrt{x-1}\)

\(\Rightarrow2x-4\sqrt{x-1}=0\)

Đặt \(\sqrt{x-1}=t\Rightarrow x=t^2+1\Rightarrow2\left(t^2+1\right)-4t=0\Rightarrow t=1\Rightarrow x=2\left(tm\right)\)