Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kết quả ra có số 0 phía sau khi trong tích tồn tại những số có số 0 hoặc tạo ra kết quả có số 0.
Ở trường hợp này có các nguyên nhân là số có số 0 và 5 là 10, 20... 90, 100. Tạo ra 11 chữ số 0. Và ở mỗi bậc có kết quả của phép 5, 15, ... 45, 55, ... 95 là 10 nữa. Và số 25 * 4 ta được 100, 50 * 2 ta được 100, 75 * 4 ta được 300 nên ta được thêm 3 chữ số 0 nữa. Vậy kết quả là 24 chữ số 0 ở cuối.
Kết quả ra có số 0 phía sau khi trong tích tồn tại những số có số 0 hoặc tạo ra kết quả có số 0. Ở trường hợp này có các nguyên nhân là số có số 0 và 5 là 10, 20... 90, 100. Tạo ra 11 chữ số 0. Và ở mỗi bậc có kết quả của phép 5, 15, ... 45, 55, ... 95 là 10 nữa. Và số 25 * 4 ta được 100, 50 * 2 ta được 100, 75 * 4 ta được 300 nên ta được thêm 3 chữ số 0 nữa. Vậy kết quả là 24 chữ số 0 ở cuối.
S = 42013
S = (..............1)671
S = ................1
vậy S cs chữ số tận cùng là 1
1x2x3x4x5x6x7x8=5x8x1x2x3x4x6x7=40x1x2x3x4x6x7 có tận cùng là 0 vì bất kỳ số nào nhân với số có cstc là 0 thì đều là 0 cả
b/ Tương tự, số 5 nhân vói bất kỳ số lẻ nào cũng có cstc là 5 cả
Chữ số tận cùng là 0 vì Y : X là kết quả có chữ số tận cùng là 0 mà nếu một phép chia có kết quả có tận cùng là 0 thì :
+ Số bị chia có tận cùng là 0
+ Số chia có tận cùng là 0
+Cả 2 trường hợp trên
Trong trường hợp này là số chia có tận cùng là 0 mà X là số chia nên X có tận cùng là 0
Đúng thì tick nha , thank you vinamilk!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
\(S=1+3^1+3^2+...+3^{30}\)
\(S=1+\left(3^1+3^3\right)+\left(3^2+3^4\right)+...+\left(3^{28}+3^{30}\right)\)
\(S=1+3.10+3^2.10+...+3^{28}.10\)
Có \(3.10+3^2.10+...+3^{28}.10\)có chữ số tận cùng là 0
\(\Rightarrow1+3.10+3^2.10+...+3^{28}.10\)có chữ số tận cùng là 1
=> Chữ số tận cùng của S là 1.
Bài 1:
=>(x+2)3=8
=>x+2=2
hay x=0
Bài 3:
a: A={5;12;19;...;131}
b: Số số hạng là (131-5):7+1=19(số)
Tổng là \(\dfrac{136\cdot19}{2}=1292\)
1) \(S=2.2.2..2\left(2023.số.2\right)\)
\(\Rightarrow S=2^{2023}=\left(2^{20}\right)^{101}.2^3=\overline{....6}.8=\overline{.....8}\)
2) \(S=3.13.23...2023\)
Từ \(3;13;23;...2023\) có \(\left[\left(2023-3\right):10+1\right]=203\left(số.hạng\right)\)
\(\) \(\Rightarrow S\) có số tận cùng là \(1.3^3=27\left(3^{203}=\left(3^{20}\right)^{10}.3^3\right)\)
\(\Rightarrow S=\overline{.....7}\)
3) \(S=4.4.4...4\left(2023.số.4\right)\)
\(\Rightarrow S=4^{2023}=\overline{.....4}\)
4) \(S=7.17.27.....2017\)
Từ \(7;17;27;...2017\) có \(\left[\left(2017-7\right):10+1\right]=202\left(số.hạng\right)\)
\(\Rightarrow S\) có tận cùng là \(1.7^2=49\left(7^{202}=7^{4.50}.7^2\right)\)
\(\Rightarrow S=\overline{.....9}\)