Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(VT=\left|2x+3\right|+\left|2x-1\right|=\left|2x+3\right|+\left|1-2x\right|\ge\left|2x+3+1-2x\right|=\left|4\right|=4\)
\(VP=\frac{8}{3\left(x+1\right)^2+2}\le\frac{8}{2}=4\)
\(VT\ge VP\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}\left(2x+3\right)\left(1-2x\right)\ge0\left(1\right)\\\left(x+1\right)^2=0\left(2\right)\end{cases}}\)
\(\left(2\right)\)\(\Leftrightarrow\)\(x=-1\) ( thỏa mãn\(\left(1\right)\) )
...
a/ 2x - 10 - [3x - 14 - (4 - 5x) - 2x] = 2
=> 2x - 10 - (3x - 14 - 4 + 5x - 2x) = 2
=> 2x - 10 - 3x + 14 + 4 - 5x + 2x = 2
=> -4x + 6 = 0
=> -4x = -6
=> x = 3/2
b/ \(\left(\frac{1}{4}x-1\right)+\left(\frac{5}{6}x-2\right)-\left(\frac{3}{8}x+1\right)=4,5\)
\(\Rightarrow\frac{1}{4}x-1+\frac{5}{6}x-2-\frac{3}{8}x-1-\frac{9}{2}=0\)
\(\Rightarrow\frac{17}{24}x-\frac{17}{2}=0\)
\(\Rightarrow\frac{17}{24}x=\frac{17}{2}\)
\(\Rightarrow x=12\)
Ta có: \(\left(2x-1\right)^6=\left(2x-1\right)^8\)
=> \(\left(2x-1\right)\in\left\{1;-1;0\right\}\)
* Nếu 2x - 1 = 1
=> 2x = 2
=> x = 2 : 2 = 1
* Nếu 2x - 1 = -1
=> 2x = (-1) + 1
=> 2x = 0
=> x = 0 : 2 = 0
* Nếu 2x - 1 = 0
=> 2x = 0 + 1
=> 2x = 1
=> x = 1 : 2
=> x = 1/2
Vậy x = { 1; 0 ; 1/2 } thì \(\left(2x-1\right)^6=\left(2x-1\right)^8\)
CHÚC BẠN HỌC TỐT
( 2x - 1 )6 = ( 2x - 1 )8
( 2x - 1 )8 - ( 2x - 1 )6 = 0
( 2x - 1 )6 . ( ( 2x - 1 )2 - 1 ) ) = 0
Vậy ( 2x - 1 )6 = 0 hoặc ( 2x - 1 )2 - 1 = 0
2x - 1 = 0 hoặc \(\orbr{\begin{cases}2x-1=1\\2x-1=-1\end{cases}}\)
x=1/2 hoặc \(\orbr{\begin{cases}x=1\\x=0\end{cases}}\)
Vậy x \(\in\){ 1/2; 0 ;1 }
\(\left(2x-1\right)^6=\left(2x-1\right)^8\)
\(\Leftrightarrow\left(2x-1\right)^6-\left(2x-1\right)^8=0\)
\(\Leftrightarrow\left(2x-1\right)^6\left[1-\left(2x-1\right)^2\right]=0\)
\(\Leftrightarrow\orbr{\begin{cases}\left(2x-1\right)^6=0\\1-\left(2x-1\right)^2=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}2x=1\\2x-1=1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\\2x=2\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=1\end{cases}}\)
Ta có \(\left(2x-1\right)^6=\left(2x-1\right)^8\)
\(\Rightarrow\left(2x-1\right)^8-\left(2x-1\right)^6=0\)
\(\Rightarrow\left(2x-1\right)^6.\left[\left(2x-1\right)^2-1\right]=0\)
\(\Rightarrow\hept{\begin{cases}\left(2x-1\right)^6=0\\\left(2x-1\right)^2-1=0\end{cases}}\Rightarrow\hept{\begin{cases}2x-1=0\\\left(2x-1\right)^2=1\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{1}{2}\\\left(2x-1\right)^2=1\end{cases}}}\)
Ta có \(\left(2x-1\right)^2=1\Rightarrow\hept{\begin{cases}2x-1=1\\2x-1=-1\end{cases}\Rightarrow\hept{\begin{cases}x=1\\x=0\end{cases}}}\)
Vậy \(x\in\left\{0;\frac{1}{2};1\right\}\)
(2x - 1)⁸ = (2x - 1)¹⁰
(2x - 1)¹⁰ - (2x - 1)⁸ = 0
(2x - 1)⁸.[(2x - 1)² - 1] = 0
(2x - 1)⁸ = 0 hoặc (2x - 1)² - 1 = 0
*) (2x - 1)⁸ = 0
2x - 1 = 0
2x = 1
x = 1/2
*) (2x - 1)² - 1 = 0
(2x - 1)² = 1
2x - 1 = 1 hoặc 2x - 1 = -1
**) 2x - 1 = 1
2x = 2
x = 1
**) 2x - 1 = -1
2x = 0
x = 0
Vậy x = 0; x = 1/2; x = 1
(2x - 1)8 = (2x - 1)10
=) (2x - 1)10 : (2x - 1)8 = 1
(2x - 1)2 = 1 =) = 12
=) 2x - 1 = 1
2x = 2
x = 1.