K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 8 2023

ĐKXĐ : \(x\ge5\)

Ta có \(x-3\sqrt{x}+4=2\sqrt{x-5}\)

\(\Leftrightarrow x-3\sqrt{x}=2\left(\sqrt{x-5}-2\right)\)

\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}-3\right)=2.\dfrac{x-9}{\sqrt{x-5}+2}\)

\(\Leftrightarrow\sqrt{x}.\left(\sqrt{x}-3\right)=\dfrac{2\left(\sqrt{x}-3\right).\left(\sqrt{x}+3\right)}{\sqrt{x-5}+2}\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}-3=0\\\sqrt{x}=\dfrac{2.\left(\sqrt{x}+3\right)}{\sqrt{x-5}+2}\end{matrix}\right.\)

Với \(\sqrt{x}-3=0\Leftrightarrow x=9\left(tm\right)\)

Với \(\sqrt{x}=\dfrac{2.\left(\sqrt{x}+3\right)}{\sqrt{x-5}+2}\Leftrightarrow\sqrt{x}.\sqrt{x-5}=6\)

\(\Leftrightarrow x^2-5x-36=0\Leftrightarrow\left[{}\begin{matrix}x=9\left(tm\right)\\x=-4\left(\text{loại}\right)\end{matrix}\right.\)

Tập nghiệm \(S=\left\{9\right\}\)

27 tháng 9 2023

ĐKXĐ \(3x^2-5x+1\ge0;x^2-2\ge0;x^2-x-1\ge0\)

Ta có : \(\sqrt{3x^2-5x+1}-\sqrt{x^2-2}=\sqrt{3.\left(x^2-x-1\right)}-\sqrt{x^2-3x+4}\)

\(\Leftrightarrow\sqrt{3x^2-5x+1}-\sqrt{3\left(x^2-x-1\right)}=\sqrt{x^2-2}-\sqrt{x^2-3x+4}\)

\(\Leftrightarrow\dfrac{3x^2-5x+1-3.\left(x^2-x-1\right)}{\sqrt{3x^2-5x+1}+\sqrt{3\left(x^2-x-1\right)}}=\dfrac{x^2-2-x^2+3x-4}{\sqrt{x^2-2}+\sqrt{x^2-3x+4}}\)

\(\Leftrightarrow\dfrac{-2x+4}{\sqrt{3x^2-5x+1}+\sqrt{3\left(x^2-x-1\right)}}=\dfrac{3x-6}{\sqrt{x^2-2}+\sqrt{x^2-3x+4}}\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\\dfrac{3}{\sqrt{x^2-2}+\sqrt{x^2-3x+4}}+\dfrac{2}{\sqrt{3x^2-5x+1}+\sqrt{3\left(x^2-x-1\right)}}=0\left(∗\right)\end{matrix}\right.\)

Xét phương trình (*) ta có VT > 0 \(\forall x\) mà VP = 0

nên (*) vô nghiệm

Vậy x = 2 là nghiệm phương trình 

4 tháng 10 2023

Giải bằng bất đẳng thức Cô si: (ĐK: \(x^2-x+1\ge0;-2x^2+x+2\ge0;x^2-4x+7\)
Ta có: \(x^2-x+1+1\ge2\sqrt{x^2-x+1}\Leftrightarrow\sqrt{x^2-x+1}\le\dfrac{x^2-x+2}{2}\left(1\right)\\ T,T:\sqrt{-2x^2+x+2}\le\dfrac{-2x^2+x+3}{2}\left(2\right)\\ \left(1\right);\left(2\right)\Rightarrow\sqrt{x^2-x+1}+\sqrt{-2x^2+x+2}\le\dfrac{x^2-x+2-2x^2+x+3}{2}=\dfrac{-x^2+5}{2}\\ \Rightarrow\sqrt{x^2-x+1}+\sqrt{-2x^2+x+2}-\dfrac{x^2-4x+7}{2}\le\dfrac{-x^2+5-x^2+4x-7}{2}\\ =\dfrac{-2x^2+4x-2}{2}\\ =-x^2+2x-1 \\ \Rightarrow-\left(x-1\right)^2\ge0\)
Điều này chỉ thỏa 1 điều kiên khi x-1=0 ⇔x=1(nhận
Vậy x=1 là nghiệm cuả phương trình

29 tháng 8 2015

Điều kiện xác định phương trình \(x\ge\frac{1}{4}\).

Nhân cả hai vế với \(\sqrt{2}\) phương trình tương đương với

\(\sqrt{4x-2\sqrt{4x-1}}-\sqrt{4x+2\sqrt{4x-1}=4}\leftrightarrow\left|\sqrt{4x-1}-1\right|-\left|\sqrt{4x-1}+1\right|=4\)

\(\leftrightarrow\left|\sqrt{4x-1}-1\right|-\sqrt{4x-1}=5\).

Trường hợp 1. NẾU \(x\ge\frac{1}{2}\to\sqrt{4x-1}-1-\sqrt{4x-1}=5\to\) loại

Trường hợp 2. NẾU \(\frac{1}{4}\le x

16 tháng 1 2016

bình lên cho nhanh bạn ak

16 tháng 1 2016

ko bình đâu bn

nhân căn 2

NV
28 tháng 2 2021

\(\Leftrightarrow2x^2+2+2\sqrt{\left(x^2+x+1\right)\left(x^2-x+1\right)}=2x^2+4\)

\(\Leftrightarrow\sqrt{x^4+x^2+1}=1\)

\(\Leftrightarrow x^4+x^2=0\)

\(\Leftrightarrow x=0\)

28 tháng 2 2021

`\sqrt{x^2+x+1}+\sqrt{x^2-x+1}=\sqrt{2x^2+4}`

`<=>2x^2+2+2\sqrt{x^4+x^2+1}=2x^2+3`

`<=>\sqrt{x^4+x^2+1}=1`

`<=>x^4+x^2=0`

`<=>x=0`

10 tháng 3 2022

ĐKXĐ: x \ge 2

Chuyển vế và bình phương hai vế:

\sqrt{5x^2 + 27x + 25} - 5\sqrt{x+1} = \sqrt{x^2 - 4}

\Leftrightarrow \sqrt{5x^2 + 27x + 25} = \sqrt{x^2 - 4} + 5\sqrt{x+1}

\Leftrightarrow 5x^2 + 27x + 25 = x^2 - 4 + 25x + 25 + 10\sqrt{(x+1)(x^2-4)}

\Leftrightarrow 4x^2 + 2x + 4 = 10\sqrt{(x+1)(x^2 - 4)}

\Leftrightarrow 2(x^2 - x - 2) + 3(x+2) = 5\sqrt{(x+1)(x^2 - 4)}

Đặt a = \sqrt{x^2 - x - 2} \ge 0; b = \sqrt{x+2} \ge 0.

Phương trình trở thành 5ab = 2a^2 + 3b^2 \Leftrightarrow (a-b)(2a-3b) = 0 \Leftrightarrow \left[ \begin{aligned} & a = b\\ & 2a = 3b\\ \end{aligned}\right..

+ Với a = b thì \sqrt{x^2 - x - 2} = \sqrt{x+2} \Leftrightarrow x^2 - 2x - 4 = 0 \Leftrightarrow \left[ \begin{aligned} & x = 1-\sqrt5 \ \text{(loại)}\\ & x = 1+\sqrt5 \ \text{(thỏa mãn)}\\ \end{aligned}\right..

+ Với 2a = 3b thì 2\sqrt{x^2 - x - 2} = 3 \sqrt{x+2}

\Leftrightarrow 4x^2 - 13x - 26 = 0 \Leftrightarrow \left[ \begin{aligned} & x = \dfrac{13 + 3\sqrt{65}}8 \ \text{(thỏa mã)n}\\ & x = \dfrac{13 - 3\sqrt{65}}8 \ \text{(loại)}\\ \end{aligned}\right..

Vậy phương trình có hai nghiệm x = 1+\sqrt5x = \dfrac{13 + 3\sqrt{65}}8.

3 tháng 9 2023

1) đkxđ \(\left\{{}\begin{matrix}x\ge\dfrac{3}{2}\\y\ge0\end{matrix}\right.\)

Xét biểu thức \(P=x^3+y^3+7xy\left(x+y\right)\)

\(P=\left(x+y\right)^3+4xy\left(x+y\right)\)

\(P\ge4\sqrt{xy}\left(x+y\right)^2\)

Ta sẽ chứng minh \(4\sqrt{xy}\left(x+y\right)^2\ge8xy\sqrt{2\left(x^2+y^2\right)}\)  (*)

Thật vậy, (*)

\(\Leftrightarrow\left(x+y\right)^2\ge2\sqrt{2xy\left(x^2+y^2\right)}\)

\(\Leftrightarrow\left(x+y\right)^4\ge8xy\left(x^2+y^2\right)\)

\(\Leftrightarrow x^4+y^4+6x^2y^2\ge4xy\left(x^2+y^2\right)\) (**)

Áp dụng BĐT Cô-si, ta được:

VT(**) \(=\left(x^2+y^2\right)^2+4x^2y^2\ge4xy\left(x^2+y^2\right)\)\(=\) VP(**)

Vậy (**) đúng \(\Rightarrowđpcm\). Do đó, để đẳng thức xảy ra thì \(x=y\)

Thế vào pt đầu tiên, ta được \(\sqrt{2x-3}-\sqrt{x}=2x-6\)

\(\Leftrightarrow\dfrac{x-3}{\sqrt{2x-3}+\sqrt{x}}=2\left(x-3\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\left(nhận\right)\\\dfrac{1}{\sqrt{2x-3}+\sqrt{x}}=2\end{matrix}\right.\)

 Rõ ràng với \(x\ge\dfrac{3}{2}\) thì \(\dfrac{1}{\sqrt{2x-3}+\sqrt{x}}\le\dfrac{1}{\sqrt{\dfrac{2.3}{2}-3}+\sqrt{\dfrac{3}{2}}}< 2\) nên ta chỉ xét TH \(x=3\Rightarrow y=3\) (nhận)

Vậy hệ pt đã cho có nghiệm duy nhất \(\left(x;y\right)=\left(3;3\right)\)

a: Đặt \(x^2-4=a\)

Pt sẽ là \(a=3\sqrt{xa}\)

\(\Rightarrow a^2=9xa\)

\(\Leftrightarrow a\left(a-9x\right)=0\)

\(\Leftrightarrow\left(x^2-4\right)\left(x^2-4-9x\right)=0\)

hay \(x\in\left\{2;-2;\dfrac{9+\sqrt{97}}{2};\dfrac{9-\sqrt{97}}{2}\right\}\)

d: Đặt \(\sqrt{x^2-x+1}=a;\sqrt{x^2+x+1}=b\)

Pt sẽ là 2a+b=ab+2

=>(b-2)(1-a)=0

=>b=2 và 1-a

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+x+1=4\\x^2-x+1=1\end{matrix}\right.\Leftrightarrow x\in\varnothing\)