\(\frac{1}{n}\cdot\frac{1}{n+4}=\frac{1}{4}\cdot\left(\frac{1}{n}-\frac{1}{n+4}...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 7 2017

\(\frac{1}{n}.\frac{1}{n+4}=\frac{1}{4}.\frac{n+4-n}{n\left(n+4\right)}=\frac{1}{4}.\left(\frac{1}{n}-\frac{1}{n+4}\right)\)

3 tháng 7 2017

\(\frac{1}{n}.\frac{1}{n+4}=\frac{1}{n\left(n+4\right)}=\frac{1}{4}.\frac{4}{n\left(n+4\right)}=\frac{1}{4}.\frac{\left(n+4\right)-n}{n\left(n+4\right)}=\frac{1}{4}\left(\frac{1}{n}-\frac{1}{n+4}\right)\)

Vậy ta có đpcm

3 tháng 7 2017

ta xét vế phải

A=\(\frac{1}{4}\).(\(\frac{1}{n}-\frac{1}{n+4}\))=\(\frac{1}{4}\).(\(\frac{n+4}{n.\left(n+4\right)}\)-\(\frac{n}{n.\left(n+4\right)}\))

=\(\frac{1}{4}\).\(\frac{4}{n.\left(n+4\right)}\)=\(\frac{1}{n.\left(n+4\right)}\)

xét vế trái

B=\(\frac{1}{n}.\frac{1}{n+4}\)=\(\frac{1}{n.\left(n+4\right)}\)

vì A=B --> điều phải chứng minh

8 tháng 3 2019

Mk ko biết lm nhưng cứ k thoải mái nha

SORRY

3 tháng 4 2016

a) \(\left(\frac{11}{4}.\frac{-5}{9}-\frac{4}{9}.\frac{11}{4}\right).\frac{8}{33}\)

=\(\frac{11}{4}\left(-\frac{5}{9}-\frac{4}{9}\right).\frac{8}{33}\)

=\(\frac{11}{4}\cdot-1\cdot\frac{8}{33}\)

=\(-\frac{11}{4}\cdot\frac{8}{33}\)

=\(-\frac{2}{3}\)

b)\(-\frac{1}{4}\cdot\frac{152}{11}+\frac{68}{4}\cdot-\frac{1}{11}\)

=\(\frac{-1.152}{4.11}+\frac{68}{4}\cdot\frac{-1}{11}\)

=\(\frac{-1.152}{11.4}+\frac{68}{4}\cdot\frac{-1}{11}\)

=\(\frac{-1}{11}\cdot\frac{152}{4}+\frac{68}{4}\cdot\frac{-1}{11}\)

=\(\frac{-1}{11}\cdot\left(\frac{152}{4}+\frac{68}{4}\right)\)

=\(\frac{-1}{11}\cdot55=-5\)

c)\(\frac{-2}{3}\cdot\frac{4}{5}+\frac{2}{3}\cdot\frac{3}{5}\)

=\(-1\cdot\frac{2}{3}\left(\frac{4}{5}+\frac{3}{5}\right)\)

=\(-1\cdot\frac{2}{3}\cdot\frac{7}{5}\)

=\(-\frac{2}{3}\cdot\frac{7}{5}\)

=\(\frac{-14}{15}\)

d) chưa nghĩ ra nhé

e) bạn chép sai đề bài rồi

mk mới kiểm tra 45 phút nên biết

đề bài nè

\(\frac{3}{2^2}\cdot\frac{8}{3^2}\cdot\frac{15}{4^2}\cdot...\cdot\frac{899}{30^2}\)

=\(\frac{1.3}{2^2}\cdot\frac{2.4}{3^2}\cdot\frac{3.5}{4^2}\cdot...\cdot\frac{29.31}{30^2}\)

=\(\frac{1.3.2.4.3.5...29.31}{2.2.3^2.4^2...30.30}\)

=\(\frac{1.2.3^2.4^2.5^2....29^2.30.31}{2.2.3^2.4^2.5^2....29^2.30.30}\)

=\(\frac{1.31}{2.30}\)

=\(\frac{31}{60}\)

3 tháng 4 2016

a)trong ngoac bn dat thau so chung la 11/4 rui tinh binh thuong                                                                         b)bn tu lam nhe                                                                                                                                             c)dat thua so chung                                                                                                                                       d)tinh trong ngoac ra rui nhan vs                                                                                                                       e) mk bo tay 

30 tháng 1 2017

a)\(VT=\frac{1}{2\cdot5}+\frac{1}{5\cdot8}+...+\frac{1}{\left(3n-1\right)\left(3n+2\right)}\)

\(=\frac{1}{3}\left[\frac{3}{2\cdot5}+\frac{3}{5\cdot8}+...+\frac{3}{\left(3n-1\right)\left(3n+2\right)}\right]\)

\(=\frac{1}{3}\left[\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{3n-1}-\frac{1}{3n+2}\right]\)

\(=\frac{1}{3}\left[\frac{1}{2}-\frac{1}{3n+2}\right]=\frac{1}{3}\left[\frac{3n+2}{2\left(3n+2\right)}-\frac{2}{2\left(3n+2\right)}\right]\)

\(=\frac{1}{3}\cdot\frac{3n}{6n+4}=\frac{n}{6n+4}=VP\)

30 tháng 1 2017

b) Ta có: \(\frac{5}{3.7}+\frac{5}{7.11}+...+\frac{5}{\left(4n-1\right)\left(4n+3\right)}\)

\(=\frac{5}{4}\left(\frac{4}{3.7}+\frac{4}{7.11}+...+\frac{4}{\left(4n-1\right)\left(4n+3\right)}\right)\)

\(=\frac{5}{4}\left(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{4n-1}-\frac{1}{4n+3}\right)\)

\(=\frac{5}{4}\left(\frac{1}{3}-\frac{1}{4n+3}\right)\)

\(=\frac{5}{4}\left(\frac{4n+3}{12n+9}-\frac{3}{12n+9}\right)\)

\(=\frac{5}{4}.\frac{4n}{12n+9}\)

\(=\frac{5n}{12n+9}\)

( sai đề )

25 tháng 7 2017

A=   \(\left(\frac{1}{2}-\frac{7}{13}-\frac{1}{3}\right)+\left(\frac{-6}{13}+\frac{1}{2}+\frac{4}{3}\right)\)

A=  \(\frac{1}{2}-\frac{7}{13}-\frac{1}{3}-\frac{6}{13}+\frac{1}{2}+\frac{4}{3}\)

A=   \(\left(\frac{1}{2}+\frac{1}{2}\right)-\left(\frac{7}{13}+\frac{6}{13}\right)-\left(\frac{1}{3}-\frac{4}{3}\right)\)

A=    \(1-1-\left(-1\right)\)

A=   \(1\)

B=   \(0,75+\frac{2}{5}+\left(\frac{1}{9}-\frac{7}{5}+\frac{5}{4}\right)\)

B=    \(\frac{3}{4}+\frac{2}{5}+\frac{1}{9}-\frac{7}{5}+\frac{5}{4}\)

B=    \(\left(\frac{3}{4}+\frac{5}{4}\right)+\left(\frac{2}{5}-\frac{7}{5}\right)+\frac{1}{9}\)

B=     \(2-1+\frac{1}{9}\)  

B=      \(\frac{9}{9}+\frac{1}{9}\)

B=    \(\frac{10}{9}\)

25 tháng 7 2017

C=   \(\left(\frac{-3}{2}.\frac{4}{3}\right).\left(\frac{-9}{2}\right)-\frac{1}{4}\)

C =   \(-2.\left(\frac{-9}{2}\right)-\frac{1}{4}\)

C =    \(9-\frac{1}{4}\)

C =   \(\frac{36}{4}-\frac{1}{4}\)

C =   \(\frac{35}{4}\)

D =   \(\frac{5}{4}.\left(\frac{-7}{10}.\frac{5}{4}-\frac{7}{8}.\frac{7}{10}\right)\)

D =    \(\frac{5}{4}.\left(\frac{-7}{8}-\frac{49}{80}\right)\)

D =     \(\frac{-35}{32}-\frac{49}{64}\)

D =     \(\frac{-70}{64}-\frac{49}{64}\)

D =     \(\frac{-119}{64}\)

k mk nha ^_^ 

21 tháng 3 2019

Bài 1 :

\(\left(-2\right)\left(x+1\right)-3\left(1-x\right)=4\)

\(\Leftrightarrow-2x-2-3+3x=4\)

\(\Leftrightarrow x=4+2+3=9\)

Bài 2 :

Cho \(S=\frac{1}{31}+\frac{1}{32}+...+\frac{1}{60}\)

\(\Leftrightarrow S=\left(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{40}\right)+\left(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{50}\right)\)

\(+\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{60}\right)\)

\(\Rightarrow S< \left(\frac{1}{30}+\frac{1}{30}+...+\frac{1}{30}\right)+\left(\frac{1}{40}+\frac{1}{40}+...+\frac{1}{40}\right)\)

\(+\left(\frac{1}{50}+\frac{1}{50}+...+\frac{1}{50}\right)\)

\(\Leftrightarrow S< \frac{10}{30}+\frac{10}{40}+\frac{10}{50}=\frac{47}{60}< \frac{48}{60}=\frac{4}{5}\)(1)

Lại có :

\(S=\left(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{40}\right)+\left(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{50}\right)\)

\(+\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{60}\right)\)

\(\Leftrightarrow S>\left(\frac{1}{40}+\frac{1}{40}+...+\frac{1}{40}\right)+\left(\frac{1}{50}+\frac{1}{50}+...+\frac{1}{50}\right)\)

\(+\left(\frac{1}{60}+\frac{1}{60}+...+\frac{1}{60}\right)\)

\(\Leftrightarrow S>\frac{10}{40}+\frac{10}{50}+\frac{10}{60}=\frac{37}{60}>\frac{36}{60}=\frac{3}{5}\)(2)

Từ (1)(2) , ta có :

\(\frac{3}{5}< S< \frac{4}{5}hay\frac{3}{5}< \frac{1}{31}+\frac{1}{32}+...+\frac{1}{60}< \frac{4}{5}\)

21 tháng 3 2019

Nguyen Ribi Nkok Ngok Khôi Bùi nguyễn ngọc dinh Phùng Tuệ Minh Akai Haruma buithianhtho ?Amanda? Nguyễn Thành Trương Nguyễn Ngô Minh Trí