Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{n}.\frac{1}{n+4}=\frac{1}{n\left(n+4\right)}=\frac{1}{4}.\frac{4}{n\left(n+4\right)}=\frac{1}{4}.\frac{\left(n+4\right)-n}{n\left(n+4\right)}=\frac{1}{4}\left(\frac{1}{n}-\frac{1}{n+4}\right)\)
Vậy ta có đpcm
ta xét vế phải
A=\(\frac{1}{4}\).(\(\frac{1}{n}-\frac{1}{n+4}\))=\(\frac{1}{4}\).(\(\frac{n+4}{n.\left(n+4\right)}\)-\(\frac{n}{n.\left(n+4\right)}\))
=\(\frac{1}{4}\).\(\frac{4}{n.\left(n+4\right)}\)=\(\frac{1}{n.\left(n+4\right)}\)
xét vế trái
B=\(\frac{1}{n}.\frac{1}{n+4}\)=\(\frac{1}{n.\left(n+4\right)}\)
vì A=B --> điều phải chứng minh
a) \(\left(\frac{11}{4}.\frac{-5}{9}-\frac{4}{9}.\frac{11}{4}\right).\frac{8}{33}\)
=\(\frac{11}{4}\left(-\frac{5}{9}-\frac{4}{9}\right).\frac{8}{33}\)
=\(\frac{11}{4}\cdot-1\cdot\frac{8}{33}\)
=\(-\frac{11}{4}\cdot\frac{8}{33}\)
=\(-\frac{2}{3}\)
b)\(-\frac{1}{4}\cdot\frac{152}{11}+\frac{68}{4}\cdot-\frac{1}{11}\)
=\(\frac{-1.152}{4.11}+\frac{68}{4}\cdot\frac{-1}{11}\)
=\(\frac{-1.152}{11.4}+\frac{68}{4}\cdot\frac{-1}{11}\)
=\(\frac{-1}{11}\cdot\frac{152}{4}+\frac{68}{4}\cdot\frac{-1}{11}\)
=\(\frac{-1}{11}\cdot\left(\frac{152}{4}+\frac{68}{4}\right)\)
=\(\frac{-1}{11}\cdot55=-5\)
c)\(\frac{-2}{3}\cdot\frac{4}{5}+\frac{2}{3}\cdot\frac{3}{5}\)
=\(-1\cdot\frac{2}{3}\left(\frac{4}{5}+\frac{3}{5}\right)\)
=\(-1\cdot\frac{2}{3}\cdot\frac{7}{5}\)
=\(-\frac{2}{3}\cdot\frac{7}{5}\)
=\(\frac{-14}{15}\)
d) chưa nghĩ ra nhé
e) bạn chép sai đề bài rồi
mk mới kiểm tra 45 phút nên biết
đề bài nè
\(\frac{3}{2^2}\cdot\frac{8}{3^2}\cdot\frac{15}{4^2}\cdot...\cdot\frac{899}{30^2}\)
=\(\frac{1.3}{2^2}\cdot\frac{2.4}{3^2}\cdot\frac{3.5}{4^2}\cdot...\cdot\frac{29.31}{30^2}\)
=\(\frac{1.3.2.4.3.5...29.31}{2.2.3^2.4^2...30.30}\)
=\(\frac{1.2.3^2.4^2.5^2....29^2.30.31}{2.2.3^2.4^2.5^2....29^2.30.30}\)
=\(\frac{1.31}{2.30}\)
=\(\frac{31}{60}\)
a)trong ngoac bn dat thau so chung la 11/4 rui tinh binh thuong b)bn tu lam nhe c)dat thua so chung d)tinh trong ngoac ra rui nhan vs e) mk bo tay
a)\(VT=\frac{1}{2\cdot5}+\frac{1}{5\cdot8}+...+\frac{1}{\left(3n-1\right)\left(3n+2\right)}\)
\(=\frac{1}{3}\left[\frac{3}{2\cdot5}+\frac{3}{5\cdot8}+...+\frac{3}{\left(3n-1\right)\left(3n+2\right)}\right]\)
\(=\frac{1}{3}\left[\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{3n-1}-\frac{1}{3n+2}\right]\)
\(=\frac{1}{3}\left[\frac{1}{2}-\frac{1}{3n+2}\right]=\frac{1}{3}\left[\frac{3n+2}{2\left(3n+2\right)}-\frac{2}{2\left(3n+2\right)}\right]\)
\(=\frac{1}{3}\cdot\frac{3n}{6n+4}=\frac{n}{6n+4}=VP\)
b) Ta có: \(\frac{5}{3.7}+\frac{5}{7.11}+...+\frac{5}{\left(4n-1\right)\left(4n+3\right)}\)
\(=\frac{5}{4}\left(\frac{4}{3.7}+\frac{4}{7.11}+...+\frac{4}{\left(4n-1\right)\left(4n+3\right)}\right)\)
\(=\frac{5}{4}\left(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{4n-1}-\frac{1}{4n+3}\right)\)
\(=\frac{5}{4}\left(\frac{1}{3}-\frac{1}{4n+3}\right)\)
\(=\frac{5}{4}\left(\frac{4n+3}{12n+9}-\frac{3}{12n+9}\right)\)
\(=\frac{5}{4}.\frac{4n}{12n+9}\)
\(=\frac{5n}{12n+9}\)
( sai đề )
A= \(\left(\frac{1}{2}-\frac{7}{13}-\frac{1}{3}\right)+\left(\frac{-6}{13}+\frac{1}{2}+\frac{4}{3}\right)\)
A= \(\frac{1}{2}-\frac{7}{13}-\frac{1}{3}-\frac{6}{13}+\frac{1}{2}+\frac{4}{3}\)
A= \(\left(\frac{1}{2}+\frac{1}{2}\right)-\left(\frac{7}{13}+\frac{6}{13}\right)-\left(\frac{1}{3}-\frac{4}{3}\right)\)
A= \(1-1-\left(-1\right)\)
A= \(1\)
B= \(0,75+\frac{2}{5}+\left(\frac{1}{9}-\frac{7}{5}+\frac{5}{4}\right)\)
B= \(\frac{3}{4}+\frac{2}{5}+\frac{1}{9}-\frac{7}{5}+\frac{5}{4}\)
B= \(\left(\frac{3}{4}+\frac{5}{4}\right)+\left(\frac{2}{5}-\frac{7}{5}\right)+\frac{1}{9}\)
B= \(2-1+\frac{1}{9}\)
B= \(\frac{9}{9}+\frac{1}{9}\)
B= \(\frac{10}{9}\)
C= \(\left(\frac{-3}{2}.\frac{4}{3}\right).\left(\frac{-9}{2}\right)-\frac{1}{4}\)
C = \(-2.\left(\frac{-9}{2}\right)-\frac{1}{4}\)
C = \(9-\frac{1}{4}\)
C = \(\frac{36}{4}-\frac{1}{4}\)
C = \(\frac{35}{4}\)
D = \(\frac{5}{4}.\left(\frac{-7}{10}.\frac{5}{4}-\frac{7}{8}.\frac{7}{10}\right)\)
D = \(\frac{5}{4}.\left(\frac{-7}{8}-\frac{49}{80}\right)\)
D = \(\frac{-35}{32}-\frac{49}{64}\)
D = \(\frac{-70}{64}-\frac{49}{64}\)
D = \(\frac{-119}{64}\)
k mk nha ^_^
Bài 1 :
\(\left(-2\right)\left(x+1\right)-3\left(1-x\right)=4\)
\(\Leftrightarrow-2x-2-3+3x=4\)
\(\Leftrightarrow x=4+2+3=9\)
Bài 2 :
Cho \(S=\frac{1}{31}+\frac{1}{32}+...+\frac{1}{60}\)
\(\Leftrightarrow S=\left(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{40}\right)+\left(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{50}\right)\)
\(+\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{60}\right)\)
\(\Rightarrow S< \left(\frac{1}{30}+\frac{1}{30}+...+\frac{1}{30}\right)+\left(\frac{1}{40}+\frac{1}{40}+...+\frac{1}{40}\right)\)
\(+\left(\frac{1}{50}+\frac{1}{50}+...+\frac{1}{50}\right)\)
\(\Leftrightarrow S< \frac{10}{30}+\frac{10}{40}+\frac{10}{50}=\frac{47}{60}< \frac{48}{60}=\frac{4}{5}\)(1)
Lại có :
\(S=\left(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{40}\right)+\left(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{50}\right)\)
\(+\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{60}\right)\)
\(\Leftrightarrow S>\left(\frac{1}{40}+\frac{1}{40}+...+\frac{1}{40}\right)+\left(\frac{1}{50}+\frac{1}{50}+...+\frac{1}{50}\right)\)
\(+\left(\frac{1}{60}+\frac{1}{60}+...+\frac{1}{60}\right)\)
\(\Leftrightarrow S>\frac{10}{40}+\frac{10}{50}+\frac{10}{60}=\frac{37}{60}>\frac{36}{60}=\frac{3}{5}\)(2)
Từ (1) và (2) , ta có :
\(\frac{3}{5}< S< \frac{4}{5}hay\frac{3}{5}< \frac{1}{31}+\frac{1}{32}+...+\frac{1}{60}< \frac{4}{5}\)
\(\frac{1}{n}.\frac{1}{n+4}=\frac{1}{4}.\frac{n+4-n}{n\left(n+4\right)}=\frac{1}{4}.\left(\frac{1}{n}-\frac{1}{n+4}\right)\)