K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2023

⇔(�−�)2=5(3−��)(��−4)

Mà (�−�)2≥0∀�;� nên 5(3−��)(��−4)≥0⇔3≤��≤4 

⇒\hept{�;�∈{3;4}�=� ⇒(�;�)∈{(2;2);(−2;−2)}

28 tháng 5 2018

\(PT\Leftrightarrow x^2-2xy+y^2=35xy-5x^2y^2-60\)

\(\Leftrightarrow\left(x-y\right)^2=5\left(3-xy\right)\left(xy-4\right)\)

Mà \(\left(x-y\right)^2\ge0\forall x;y\) nên \(5\left(3-xy\right)\left(xy-4\right)\ge0\Leftrightarrow3\le xy\le4\) 

\(\Rightarrow\hept{\begin{cases}x;y\in\left\{3;4\right\}\\x=y\end{cases}}\) \(\Rightarrow\left(x;y\right)\in\left\{\left(2;2\right);\left(-2;-2\right)\right\}\)

28 tháng 5 2018

Vi ét à bạn?

29 tháng 9 2016

Ta có 

PT <=> (1 + 5y2)x2 - 37yx + y2 + 60 = 0

Xét pt theo ẩn x ta có để pt có nghiệm thì 

\(\ge0\)

<=> (37y)2 - 4(1 + 5y2)(y2 + 60) \(\ge0\)

<=> - 20y4 + 165y2 - 240\(\ge0\)

<=> 1 < y2 < 7

=> y2 = 4

=> y = (2;-2)

=> x =  (2;-2)

NV
9 tháng 11 2021

\(37xy=x^2+y^2+5x^2y^2+60\ge2xy+5x^2y^2+60\)

\(\Rightarrow5x^2y^2-35xy+60\le0\)

\(\Rightarrow5\left(xy-3\right)\left(xy-4\right)\le0\)

\(\Rightarrow\left[{}\begin{matrix}xy=3\\xy=4\end{matrix}\right.\) 

Thế vào pt đầu \(\Rightarrow...\)

15 tháng 11 2021

\(5\left(xy-3\right)\left(xy-4\right)\le0\) sao suy ra \(\left[{}\begin{matrix}xy=3\\xy=4\end{matrix}\right.\) đc

12 tháng 2 2023

\(3x^2+y^2+4xy=5x+2y+1\)

\(\Leftrightarrow3x^2+x\left(4y-5\right)+\left(y^2-2y-1\right)=0\left(1\right)\)

Coi phương trình (1) là phương trình ẩn x tham số y, ta có:

\(\Delta=\left(4y-5\right)^2-3.4.\left(y^2-2y-1\right)\)

\(=16y^2-40y+25-12y^2+24y+12\)

\(=4y^2-16y+37\)

Để phương trình (1) có nghiệm nguyên thì \(\Delta\) phải là số chính phương hay \(\Delta=4y^2-16y+37=a^2\) (a là số tự nhiên).

\(\Rightarrow4y^2-16y+16+21=a^2\)

\(\Rightarrow a^2-\left(2y-4\right)^2=21\)

\(\Rightarrow\left(a-2y+4\right)\left(a+2y-4\right)=21\)

\(\Rightarrow a-2y+4;a+2y-4\) là các ước số của 21.

Với \(y\ge2\Rightarrow a-2y+4\le a+2y-4\) và \(a+2y-4\ge0\) Lập bảng:

a-2y+413
a+2y-4217
a115
y7

3

Với \(y\ge2\Rightarrow a-2y+4\le a+2y-4\) và \(a+2y-4\ge0\) Lập bảng:

a-2y+4217
a+2y-413
a115
y-3(loại vì y>0)1

Với a=11, y=7. Phương trình (1) có 2 nghiệm:

\(x_1=\dfrac{-\left(4.7-5\right)+\sqrt{11^2}}{6}=-2\) (loại vì x>0)

\(x_2=\dfrac{-\left(4.7-5\right)-\sqrt{11^2}}{6}=-\dfrac{17}{3}\left(loại\right)\)

Với \(a=5;y=3\). Phương trình (1) có 2 nghiệm:

\(x_1=\dfrac{-\left(4.3-5\right)+\sqrt{5^2}}{6}=-\dfrac{1}{3}\left(loại\right)\)

\(x_2=\dfrac{-\left(4.3-5\right)-\sqrt{5^2}}{6}=-2\) (loại vì x>0)

Với \(a=5;y=1\). Phương trình (1) có 2 nghiệm:

\(x_1=\dfrac{-\left(4.1-5\right)+\sqrt{5^2}}{6}=1\)

\(x_2=\dfrac{-\left(4.1-5\right)-\sqrt{5^2}}{6}=-\dfrac{2}{3}\left(loại\right)\)

Vậy x,y nguyên dương thỏa mãn phương trình trên là \(x=y=1\)

 

12 tháng 2 2023

cho mình hỏi sao để nó có nghiệm nguyên khi nó là số chính phương thế bạn

 

NV
7 tháng 1 2021

\(5x^2+2\left(3y+1\right)x+2y^2+2y-73=0\) (1)

\(\Delta'=\left(3y+1\right)^2-5\left(2y^2+2y-73\right)=-y^2-4y+366\)

\(\Delta'\) là số chính phương \(\Rightarrow-y^2-4y+366=k^2\)

\(\Leftrightarrow\left(y+2\right)^2+k^2=370=3^2+19^2=9^2+17^2\)

\(\Rightarrow\left[{}\begin{matrix}y+2=3\\y+2=19\\y+2=9\\y+2=17\end{matrix}\right.\) thế vào (1) tìm x nguyên dương

7 tháng 1 2021

Thanks nhìu :))

18 tháng 2

5x2+2y+y2-4x-40=0

△=(-4)2-4.5.(2y+y2-40)

△=16-40y-20y2+800

△=-(784+40y+20y2)

△=-(32y+8y+16y2+4y2+16+4+764)

△=-[(4y+4)2+(2y+2)2+764]<0

=>PHƯƠNG TRÌNH VÔ NGHIỆM.

13 tháng 12

3x + 9xy - 6y