Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải
\(\frac{1}{6}+\frac{1}{12}+\frac{1}{24}+\frac{1}{48}+\)\(\frac{1}{96}\)
\(=\frac{1}{3}-\frac{1}{6}+\frac{1}{6}-\frac{1}{12}\)\(+\frac{1}{12}-\frac{1}{24}+\frac{1}{24}-\frac{1}{48}\)\(+\frac{1}{48}-\frac{1}{96}\)
\(=\frac{1}{3}-\frac{1}{96}\)
\(=\frac{31}{96}\)
1/6 + 1/12 + 1/24 + 1/48 + 1/96
= 1/3 - 1/6 + 1/6 - 1/12 + 1/12 - 1/24 + 1/24 - 1/48 + 1/48 - 1/96
= 1/3 - 1/96
= 31/96
\(=2\left(\frac{1}{3}+\frac{1}{6}+...+\frac{1}{192}\right)\)
\(=2\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{6}+...+\frac{1}{96}-\frac{1}{192}\right)\)
\(=2\left(1-\frac{1}{192}\right)\)
\(=2\times\frac{191}{192}\)
\(=\frac{191}{96}\)
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{12}+\frac{1}{24}+\frac{1}{48}+\frac{1}{96}\)
\(=\left(\frac{1}{3}+\frac{1}{6}\right)+\left(\frac{1}{12}+\frac{1}{24}\right)+\left(\frac{1}{48}+\frac{1}{96}\right)\)
\(=\frac{1}{2}+\frac{1}{8}+\frac{1}{32}\)
\(=\frac{21}{32}\)
Biểu thức toán học kia có giá trị là
124+196+1240+...+12880=116
1/16