K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 7 2023

thấy sai sai bạn ạ

\(x^2+2x-10=0\)

\(\Leftrightarrow x^2+2x+1-9=0\)

\(\Leftrightarrow\left(x+1\right)^2-9=0\\\)

\(\Leftrightarrow\left(x+1\right)^2=9\)

\(\Leftrightarrow\left(x+1\right)^2=\pm\sqrt{9}\)

\(\Leftrightarrow\left(x+1\right)^2=\left(\pm3\right)^2\)

\(\Leftrightarrow\left[{}\begin{matrix}x+1=3\\x+1=-3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3-1\\x=-3-1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-4\end{matrix}\right.\)

Vậy S={2;-4}

17 tháng 8 2020

Ta có : x2 - 2x + 10 = 0

=> x2 - 2x + 1 = -9

=> (x - 1)2 = -9

=> \(x\in\varnothing\)

17 tháng 8 2020

\(x^2-2x+10=0\)

\(\Leftrightarrow x^2-2x+1+9=0\)

\(\Leftrightarrow\left(x-1\right)^2+9=0\)

Mà \(\hept{\begin{cases}\left(x-1\right)^2\ge0\\9>0\end{cases}}\)

=> Phương trình vô nghiệm 

4 tháng 10 2019

Ta có: \(x+2\sqrt{2}.x^2+2x^3=0\)

\(\Leftrightarrow x\left(1+2\sqrt{2}.x+2x^2\right)=0\)

\(\Leftrightarrow x\left[1^2+2.x\sqrt{2}.1+\left(x\sqrt{2}\right)^2\right]=0\)

\(\Leftrightarrow x\left(1+x\sqrt{2}\right)^2=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\1+x\sqrt{2}=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{-1}{\sqrt{2}}\end{cases}}\)

Vậy\(x\in\left\{0;\frac{-1}{\sqrt{2}}\right\}\)

4 tháng 10 2019

\(x+2\sqrt{2}x^2+2x^3=0\)

\(x\left(1+2\sqrt{2}x+2x^2\right)=0\)

\(x\left(2\sqrt{2}x+1\right)^2=0\)

\(\Rightarrow\orbr{\begin{cases}x=0\\2\sqrt{2}x+1=0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{2x\sqrt{2}}\end{cases}}\)

4 tháng 8 2016

Đặt t = 2x^2 +x pt trở thành

t^2 - 4t + 3=0

=>t^2 -t -3t +3 =0

=>t( t - 1) -3( t - 1)=0 

=>(t - 3)(t - 1 )=0 

*)Với t-3=0 <=> 2x^2 + x -3=0

=>2x^2 +3x -2x - 3 =0

=>x(2x + 3) - (2x + 3)=0

=>(x - 1)(2x + 3)=0 <=>x=1 hoặc x=-3/2

*)Với t-1=0 <=> 2x^2 + x -1=0

=>2x^2 - x + 2x -1=0

=>x(2x - 1) + (2x - 1) =0

=>(x + 1)(2x - 1)=0 <=> x=-1 hoặc x=1/2

(x+1)(6x2+2x)+(x-1)(6x2+2x)
<=> (6x2+2x)(x+1+x-1)
<=> 2x(3x+1)2x
<=> 4x2(3x+1)
<=> x2=0
       3x+1=0
<=> x=0
       x= -1/3 (-1 phần 3)

26 tháng 1 2017

a, ĐKXĐ: x\(\ne\)5, x\(\ne\)0, x\(\ne\)-5

b, B = \(\frac{x^2+2x}{2x+10}+\frac{x-5}{x}+\frac{50-5x}{2x\left(x+5\right)}\)

     = \(\frac{x^3+2x^2}{2x\left(x+5\right)}+\frac{2\left(x+5\right)\left(x-5\right)}{2x\left(x+5\right)}+\frac{50-5x}{2x\left(x+5\right)}\)

     =\(\frac{x^3+2x^2}{2x\left(x+5\right)}+\frac{2x^2-50}{2x\left(x+5\right)}+\frac{50-5x}{2x\left(x+5\right)}\)

    = \(\frac{x^3+2x^2+2x^2-50+50-5x}{2x\left(x+5\right)}\)

    =\(\frac{x\left(x^2+4x-5\right)}{2x\left(x+5\right)}\)=\(\frac{x\left(x^2+4x-5\right)}{2x\left(x+5\right)}\)=\(\frac{x-1}{2}\)

Với B = 0 thì\(\frac{x-1}{2}\)=0 => x = 1

Với B = \(\frac{1}{4}\)thì \(\frac{x-1}{2}\)=\(\frac{1}{4}\)=> x = 1,5

20 tháng 12 2020

x2 - 2x - 4 = 0

⇔ ( x2 - 2x + 1 ) - 5 = 0

⇔ ( x - 1 )2 - ( √5 )2 = 0

⇔ ( x - 1 - √5 )( x - 1 + √5 ) = 0

⇔ x = √5 + 1 hoặc x = -√5 + 1

20 tháng 12 2020

\(x^2-2x-4=0\)

\(\Leftrightarrow\left(x^2-2x+1\right)-5=0\)

\(\Leftrightarrow\left(x-1\right)^2-5=0\Leftrightarrow\left(x-1-\sqrt{5}\right)\left(x-1+\sqrt{5}\right)=0\)

\(\Leftrightarrow x=1\pm\sqrt{5}\)

a:Ta có: \(x\left(x-1\right)+x=4\)

\(\Leftrightarrow x^2-x+x=4\)

\(\Leftrightarrow x^2=4\)

hay \(x\in\left\{2;-2\right\}\)

b: Ta có: \(3x\left(x-5\right)-2x+10=0\)

\(\Leftrightarrow\left(x-5\right)\left(3x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=\dfrac{2}{3}\end{matrix}\right.\)

c: Ta có: \(5x^2-3x-2=0\)

\(\Leftrightarrow5x^2-5x+2x-2=0\)

\(\Leftrightarrow\left(x-1\right)\left(5x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{2}{5}\end{matrix}\right.\)

d: Ta có: \(x^4-11x^2+18=0\)

\(\Leftrightarrow x^4-9x^2-2x^2+18=0\)

\(\Leftrightarrow x^2\left(x^2-9\right)-2\left(x^2-9\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+3\right)\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-3\\x=\sqrt{2}\\x=-\sqrt{2}\end{matrix}\right.\)

14 tháng 8 2021

a) x(x-1)+x=4

⇔x2=4⇔\(x=\pm2\)

b)3x(x-5)-2x+10=0

⇔3x(x-5)-2(x-5)=0

⇔(x-5)(3x-1)=0

\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=\dfrac{1}{3}\end{matrix}\right.\)

c)5x2-3x-2=0

⇔ 5x(x-1)+2(x-1)=0

⇔ (x-1)(5x+2)=0

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{2}{5}\end{matrix}\right.\)

d)x4-11x2+18=0

⇔ x2(x2-2)-9(x2-2)=0

⇔ (x2-2)(x2-9)=0

\(\Leftrightarrow\left[{}\begin{matrix}x^2=2\\x^2=9\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\pm\sqrt{2}\\x=\pm3\end{matrix}\right.\)

9 tháng 8 2020

giúp mình vs ạ

9 tháng 8 2020

a) \(\left(2x-3\right)^2-\left(2x+5\right)^2=10\)

\(\Leftrightarrow4x^2-12x+9-4x^2-20x-25-10=0\)

\(\Leftrightarrow-32x-26=0\)

\(\Leftrightarrow-32x=26\)

\(\Rightarrow x=-\frac{13}{16}\)

b) \(4\left(x+1\right)^2+\left(2x-1\right)^2+8\left(x-1\right)\left(x+1\right)=11\)

\(\Leftrightarrow4x^2+8x+4+4x^2-4x+1+8x^2-8=0\)

\(\Leftrightarrow16x^2+4x-3=0\)

\(\Leftrightarrow4\left(4x^2+x+\frac{1}{16}\right)-\frac{13}{4}=0\)

\(\Leftrightarrow\left[2\left(2x+\frac{1}{4}\right)\right]^2-\left(\frac{\sqrt{13}}{2}\right)^2=0\)

\(\Leftrightarrow\left(4x+\frac{1}{2}-\frac{\sqrt{13}}{2}\right)\left(4x+\frac{1}{2}+\frac{\sqrt{13}}{2}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}4x+\frac{1-\sqrt{13}}{2}=0\\4x+\frac{1+\sqrt{13}}{2}=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{\sqrt{13}-1}{8}\\x=\frac{-1-\sqrt{13}}{8}\end{cases}}\)

c) \(\left(x+5\right)^2=45+x^2\)

\(\Leftrightarrow x^2+10x+25-x^2-45=0\)

\(\Leftrightarrow10x-20=0\)

\(\Leftrightarrow10x=20\)

\(\Rightarrow x=2\)

d) \(\left(2x-3\right)^2-\left(2x-1\right)^2=-3\)

\(\Leftrightarrow4x^2-12x+9-4x^2+4x-1+3=0\)

\(\Leftrightarrow-8x+11=0\)

\(\Leftrightarrow-8x=-11\)

\(\Rightarrow x=\frac{11}{8}\)

e) \(\left(x-1\right)^2-\left(5x-3\right)^2=0\)

\(\Leftrightarrow\left(x-1-5x+3\right)\left(x-1+5x-3\right)=0\)

\(\Leftrightarrow\left(-4x+2\right)\left(6x-4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}-4x+2=0\\6x-4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=\frac{2}{3}\end{cases}}\)

13 tháng 2 2016

Đầu tiên bạn lấy a+b+c=x^2+y^2+z^2-xy-yz-zx

Chúng ta sẽ chứng minh đảo ta thế a+b+c vào vế phải ta được

Vế phải=(x+y+z)(x^2+y^2+z^2-xy-yz-zx)=x^3+y^3+z^3-3xyz

Vế trái=ax+by+cz=(x^2-yz)x+(y^2-zx)y+(z^2-xy)z=x^3+y^3+z^3-3xyz

Vậy là xong VT=VP thế thì

ax+by+cz=(x+y+z)(a+b+c) cảm ơn bạn đã cho mình một bài toán hay Thank you hahahaha