\(\dfrac{x+1}{10}\)+\(\dfrac{x+1}{11}\)+...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 7 2023

\(\dfrac{x+1}{10}+\dfrac{x+1}{11}+\dfrac{x+1}{12}=\dfrac{x+1}{13}+\dfrac{x+1}{14}\)

\(\dfrac{x+1}{10}+\dfrac{x+1}{11}+\dfrac{x+1}{12}-\dfrac{x+1}{13}-\dfrac{x+1}{14}=0\)\(\left(x+1\right)\times\dfrac{1}{10}+\left(x+1\right)\times\dfrac{1}{11}+\left(x+1\right)\times\dfrac{1}{12}-\left(x+1\right)\times\dfrac{1}{13}-\left(x+1\right)\times\dfrac{1}{14}=0\)

\(\left(x+1\right)\times\left(\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}-\dfrac{1}{13}-\dfrac{1}{14}\right)=0\)

Vì \(\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}-\dfrac{1}{13}-\dfrac{1}{14}>0\) 

 => \(x+1=0\)

             \(x=0-1\)

             \(x=-1\)

5 tháng 7 2023

\(\dfrac{x+1}{10}+\dfrac{x+1}{11}+\dfrac{x+1}{12}=\dfrac{x+1}{13}+\dfrac{x+1}{14}\\ \Rightarrow\dfrac{x+1}{10}+\dfrac{x+1}{11}+\dfrac{x+1}{12}-\dfrac{x+1}{13}-\dfrac{x+1}{14}=0\\ \Rightarrow\left(x+1\right)\left(\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}-\dfrac{1}{13}-\dfrac{1}{14}\right)=0\\ \Rightarrow x+1=0\left(\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}-\dfrac{1}{13}-\dfrac{1}{14}\ne0\right)\\ \Rightarrow x=-1\)

14 tháng 6 2017

a)\(\dfrac{x+1}{10}+\dfrac{x+1}{11}+\dfrac{x+1}{12}=\dfrac{x+1}{13}+\dfrac{x+1}{14}\)

\(\Rightarrow\left(x+1\right)\left(\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}\right)=\left(x+1\right)\left(\dfrac{1}{13}+\dfrac{1}{14}\right)\)

\(\Rightarrow\left(x+1\right)\left(\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}-\dfrac{1}{13}-\dfrac{1}{14}\right)=0\)

\(\Rightarrow x+1=0\)

\(\Rightarrow x=-1\)

b)\(\dfrac{x+4}{2014}+\dfrac{x+3}{2015}=\dfrac{x+2}{2016}+\dfrac{x+1}{2017}\)

\(1+\dfrac{x+4}{2014}+1+\dfrac{x+3}{2015}=1+\dfrac{x+2}{2016}+1+\dfrac{x+1}{2017}\)

\(\Rightarrow\dfrac{x+2018}{2014}+\dfrac{x+2018}{2015}=\dfrac{x+2018}{2016}+\dfrac{x+2018}{2017}\)

Giải tương tự câu a ta được \(x=-2018\)

14 tháng 6 2017

a) \(\dfrac{x+1}{10}+\dfrac{x+1}{11}+\dfrac{x+1}{12}=\dfrac{x+1}{13}+\dfrac{x+1}{14}\)

\(\Rightarrow6006\left(x+1\right)+5460\left(x+1\right)+5005\left(x+1\right)=4620\left(x+1\right)+4290\left(x+1\right)\)

\(\Leftrightarrow\left(6006+5460+5005\right)\cdot\left(x+1\right)=\left(4620+4290\right)\cdot\left(x+1\right)\)

\(\Leftrightarrow16471\left(x+1\right)=8910\left(x+1\right)\)

\(\Leftrightarrow16471x+16471=8910x+8910\)

\(\Leftrightarrow16471x-8910x=8910-16471\)

\(\Leftrightarrow7561x=-7561\)

\(\Rightarrow x=-1\)

Vậy \(x=-1\)

b) \(\dfrac{x+4}{2014}+\dfrac{x+3}{2015}=\dfrac{x+2}{2016}+\dfrac{x+1}{2017}\)

\(\Rightarrow4096749040\left(x+4\right)+4094735904\left(x+3\right)=4092704785\left(x+2\right)+4090675680\left(x+1\right)\)

\(\Leftrightarrow4096769040x+16387076160+4094735904x+12284207712=4092704785x+8185409570+4090675680x+4090675680\)

\(\Leftrightarrow8191504944x+28671283872=8183380465x+12276085250\)

\(\Leftrightarrow8191504944x-8183380465x=12276085250-28671283872\)

\(\Leftrightarrow8124479x=-16395198622\)

\(\Rightarrow x=-2018\)

Vậy \(x=-2017\)

P/s: đây không phải cách làm tối ưu, vì vậy mình nghĩ bạn nên tham khảo từ các bài làm khác nhé!

18 tháng 6 2018

Giải:

a) \(\dfrac{1}{3}x+\dfrac{1}{5}-\dfrac{1}{2}x=1\dfrac{1}{4}\)

\(\Leftrightarrow\dfrac{1}{5}-\dfrac{1}{6}x=\dfrac{5}{4}\)

\(\Leftrightarrow\dfrac{1}{6}x=\dfrac{-21}{20}\)

\(\Leftrightarrow x=\dfrac{-63}{10}\)

Vậy ...

b) \(\dfrac{3}{2}\left(x+\dfrac{1}{2}\right)-\dfrac{1}{8}x=\dfrac{1}{4}\)

\(\Leftrightarrow\dfrac{3}{2}x+\dfrac{3}{4}-\dfrac{1}{8}x=\dfrac{1}{4}\)

\(\Leftrightarrow\dfrac{11}{8}x=\dfrac{-1}{2}\)

\(\Leftrightarrow x=\dfrac{-4}{11}\)

Vậy ...

Các câu sau làm tương tự câu b)

13 tháng 7 2017

Các câu dễ tự làm :v

\(\dfrac{x+1}{10}+\dfrac{x+1}{11}+\dfrac{x+1}{12}=\dfrac{x+1}{13}+\dfrac{x+1}{14}\)

\(\Rightarrow\dfrac{x+1}{10}+\dfrac{x+1}{11}+\dfrac{x+1}{12}-\dfrac{x+1}{13}-\dfrac{x+1}{14}=0\)

\(\Rightarrow\left(x+1\right)\left(\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}-\dfrac{1}{13}-\dfrac{1}{14}\right)=0\)

\(\Rightarrow x+1=0\Rightarrow x=-1\)

\(\dfrac{x+4}{2000}+\dfrac{x+3}{2001}=\dfrac{x+2}{2002}+\dfrac{x+1}{2003}\)

\(\Rightarrow\dfrac{x+4}{2000}+1+\dfrac{x+3}{2001}+1=\dfrac{x+2}{2002}+1+\dfrac{x+1}{2003}+1\)

\(\Rightarrow\dfrac{x+2004}{2000}+\dfrac{x+2004}{2001}=\dfrac{x+2004}{2002}+\dfrac{x+2004}{2003}\)

\(\Rightarrow\dfrac{x+2004}{2000}+\dfrac{x+2004}{2001}-\dfrac{x+2004}{2002}-\dfrac{x+2004}{2003}=0\)

\(\Rightarrow\left(x+2004\right)\left(\dfrac{1}{2000}+\dfrac{1}{2001}-\dfrac{1}{2002}-\dfrac{1}{2003}\right)=0\)

\(\Rightarrow x+2004=0\Rightarrow x=-2004\)

30 tháng 8 2019

1) -2/3

1: \(\Leftrightarrow3x+4=2\)

=>3x=-2

=>x=-2/3

2: \(\Leftrightarrow7x-7=6x-30\)

=>x=-23

3: =>\(5x-5=3x+9\)

=>2x=14

=>x=7

4: =>9x+15=14x+7

=>-5x=-8

=>x=8/5

16 tháng 11 2018

1)

a.\(\dfrac{1}{5}+x=\dfrac{13}{50}\)

\(\Leftrightarrow x=\dfrac{13}{50}-\dfrac{1}{5}=\dfrac{13-10}{50}=\dfrac{3}{50}\)

b.\(\dfrac{1}{6}-x=\dfrac{5}{12}\)

\(\Leftrightarrow x=\dfrac{1}{6}-\dfrac{5}{12}=\dfrac{2-5}{12}=-\dfrac{3}{12}=-\dfrac{1}{4}\)

c.\(x\left(-\dfrac{1}{2}\right)^2=\dfrac{1}{16}\)

\(\Leftrightarrow x\left(-\dfrac{1}{2}\right)^2=\dfrac{1}{4}.\left(-\dfrac{1}{2}\right)^2\)

\(\Leftrightarrow x=\dfrac{1}{4}\)

d.\(x:\dfrac{7}{11}=\dfrac{9}{33}\)

\(\Leftrightarrow x=\dfrac{9}{33}.\dfrac{7}{11}=\dfrac{3}{11}.\dfrac{7}{11}=\dfrac{21}{121}\)

e.\(\dfrac{3}{5}.x=-\dfrac{21}{10}\)

\(\Leftrightarrow x=-\dfrac{21}{10}:\dfrac{3}{5}=-\dfrac{21}{10}.\dfrac{5}{3}=-\dfrac{7}{2}\)

14 tháng 2 2018

a) \(2\left(4x-30\right)-3\left(x+5\right)+4\left(x-10\right)=5\left(x+2\right)\)

\(\Leftrightarrow8x-60-3x+15+4x-40=5x+10\)

\(\Leftrightarrow9x-35=5x+10\)

\(\Leftrightarrow9x-5x=10+35\)

\(\Leftrightarrow4x=45\)

\(\Leftrightarrow x=\dfrac{45}{4}=11,25\)

b) \(\dfrac{11}{12}-\left(\dfrac{2}{5}+x\right)=\dfrac{2}{3}\left(6x+1\right)\)

\(\Leftrightarrow\dfrac{11}{12}-\left(\dfrac{2}{5}+x\right)=4x+\dfrac{2}{3}\)

\(\Leftrightarrow\dfrac{31}{60}+x=4x+\dfrac{2}{3}\)

\(\Leftrightarrow\dfrac{31}{60}-\dfrac{2}{3}=4x-x\)

\(\Leftrightarrow3x=\dfrac{1}{60}\)

\(\Leftrightarrow x=\dfrac{1}{180}\)

c) \(\dfrac{7}{3}-\left(2x-\dfrac{1}{3}\right)=\left(-2\dfrac{1}{6}+1\dfrac{1}{2}\right):0,25\)

\(\Leftrightarrow\dfrac{7}{3}-2x+\dfrac{1}{3}=-1\dfrac{2}{3}:\dfrac{1}{4}\)

\(\Leftrightarrow\dfrac{8}{3}-2x=\dfrac{-5}{3}.4\)

\(\Leftrightarrow\dfrac{8}{3}-2x=\dfrac{-20}{3}\)

\(\Leftrightarrow2x=\dfrac{8}{3}+\dfrac{20}{3}\)

\(\Leftrightarrow2x=\dfrac{28}{3}\)

\(\Leftrightarrow x=4\dfrac{2}{3}\)

d) \(0,75+\dfrac{5}{9}:x=5\dfrac{1}{2}\)

\(\Leftrightarrow\dfrac{3}{4}+\dfrac{5}{9}:x=\dfrac{11}{2}\)

\(\Leftrightarrow\dfrac{5}{9}:x=\dfrac{11}{2}-\dfrac{3}{4}\)

\(\Leftrightarrow\dfrac{5}{9}:x=\dfrac{19}{4}\)

\(\Leftrightarrow x=\dfrac{5}{9}:\dfrac{19}{4}\)

\(\Leftrightarrow x=\dfrac{20}{171}\)

a: \(\Leftrightarrow2^x\cdot\dfrac{1}{2}+2^x\cdot2=2^{10}\left(2^2+1\right)\)

\(\Leftrightarrow2^x=2^{10}\cdot5:\dfrac{5}{2}=2^{10}\cdot5\cdot\dfrac{2}{5}=2^{11}\)

=>x=11

b: \(\Leftrightarrow3^x\cdot\dfrac{1}{3}+3^x\cdot9=3^{13}\cdot28\)

\(\Leftrightarrow3^x=3^{13}\cdot28:\dfrac{28}{3}=3^{14}\)

hay x=14

27 tháng 6 2017

a, \(\dfrac{3}{4}+x=\dfrac{8}{13}\)

\(x=\dfrac{8}{13}-\dfrac{3}{4}\)

\(x=-\dfrac{7}{52}\)

b,\(\dfrac{11}{12}-\left(\dfrac{2}{5}+x\right)=\dfrac{2}{3}\)

\(\dfrac{2}{5}+x=\dfrac{11}{12}-\dfrac{2}{3}\)

\(\dfrac{2}{5}+x=\dfrac{1}{4}\)

\(x=\dfrac{1}{4}-\dfrac{2}{5}\)

\(x=-\dfrac{3}{20}\)

c, \(2x\left(x-\dfrac{1}{7}\right)=0\)

\(2x-\dfrac{1}{7}=0\)

\(x-\dfrac{1}{7}=0:2\)

\(x-\dfrac{1}{7}=0\)

\(x=0-\dfrac{1}{7}\)

\(x=\dfrac{1}{7}\)

d, \(\dfrac{3}{4}+\dfrac{1}{4}\div x=\dfrac{2}{5}\)

\(\left(\dfrac{3}{4}+\dfrac{1}{4}\right):x=\dfrac{2}{5}\)

\(1:x=\dfrac{2}{5}\)

\(x=1:\dfrac{2}{5}\)

\(x=\dfrac{5}{2}\)

27 tháng 6 2017

a) \(\dfrac{3}{4}+x=\dfrac{8}{13}\)\(\Leftrightarrow\) \(x=\dfrac{8}{13}-\dfrac{3}{4}=\dfrac{-7}{52}\) vậy \(x=\dfrac{-7}{52}\)

b) \(\dfrac{11}{12}-\left(\dfrac{2}{5}+x\right)=\dfrac{2}{3}\) \(\Leftrightarrow\) \(\dfrac{11}{12}-\dfrac{2}{5}-x=\dfrac{2}{3}\) \(\Leftrightarrow\) \(x=\dfrac{11}{12}-\dfrac{2}{5}-\dfrac{2}{3}=\dfrac{-3}{20}\) vậy \(x=\dfrac{-3}{20}\)

c) \(2x\left(x-\dfrac{1}{7}\right)=0\) \(\Leftrightarrow\) \(2x^2-\dfrac{2}{7}x=0\)

\(\Delta\) = \(\left(\dfrac{-2}{7}\right)^2-4.2.0=\dfrac{4}{49}>0\)

\(\Rightarrow\) phương trình có 2 nghiệm phân biệt

\(x_1=\dfrac{\dfrac{2}{7}+\sqrt{\dfrac{4}{49}}}{4}=\dfrac{1}{7}\)

\(x_2=\dfrac{\dfrac{2}{7}-\sqrt{\dfrac{4}{49}}}{4}=0\)

vậy \(x=0;x=\dfrac{1}{7}\)

16 tháng 6 2018

\(\dfrac{x+1}{10}+\dfrac{x+1}{11}+\dfrac{x+1}{12}-\dfrac{x+1}{13}-\dfrac{x+1}{14}=0\)

<=> \(\left(x+1\right)\left(\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}-\dfrac{1}{13}-\dfrac{1}{14}\right)=0\)

=> x+1=0

<=> x=-1

b) \(\dfrac{x+4}{2010}+1+\dfrac{x+3}{2011}+1=\dfrac{x+2}{2012}+1+\dfrac{x+1}{2013}+1\)

<=> \(\dfrac{x+2014}{2010}+\dfrac{x+2014}{2011}=\dfrac{x+2014}{2012}+\dfrac{x+2014}{2013}\)

đến đây tương tự a

16 tháng 6 2018

a) Ta có:

\(\dfrac{x+1}{10}+\dfrac{x+1}{11}+\dfrac{x+1}{12}=\dfrac{x+1}{13}+\dfrac{x+1}{14}\)

\(\Leftrightarrow\dfrac{x+1}{10}+\dfrac{x+1}{11}+\dfrac{x+1}{12}-\dfrac{x+1}{13}-\dfrac{x+1}{14}=0\)

\(\Leftrightarrow\left(x+1\right)\left(\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}-\dfrac{1}{13}-\dfrac{1}{14}\right)=0\)

\(\Leftrightarrow x+1=0\left(Vì:\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}-\dfrac{1}{13}-\dfrac{1}{14}\ne0\right)\)

\(\Leftrightarrow x=-1\)

Vậy....

b)Sửa lại đề nha

Ta có:

\(\dfrac{x+4}{2010}+\dfrac{x+3}{2011}=\dfrac{x+2}{2012}+\dfrac{x+1}{2013}\)

\(\Leftrightarrow\dfrac{x+4}{2010}+1+\dfrac{x+3}{2011}+1=\dfrac{x+2}{2012}+1+\dfrac{x+1}{2013}+1\)

\(\Leftrightarrow\dfrac{x+2014}{2010}+\dfrac{x+2014}{2011}=\dfrac{x+2014}{2012}+\dfrac{x+2014}{2013}\)

Lý giải tương tự câu a và kết luận nha

25 tháng 12 2017

a, \(\left(x-1\right)^5=-243\)

=> \(\left(x-1\right)^5=\left(-3\right)^5\)

=> x-1= -3

=> x= -2

25 tháng 12 2017

b, \(\dfrac{x+2}{11}+\dfrac{2+x}{12}+\dfrac{x+2}{13}=\dfrac{2+x}{14}+\dfrac{x+2}{15}\)

=> \(\dfrac{x+2}{11}+\dfrac{2+x}{12}+\dfrac{x+2}{13}-\dfrac{2+x}{14}+\dfrac{x+2}{15}=0\)

=>\(\dfrac{x+2+2+x+x+2-2+x+x+2}{11+12+13-14+15}\)

=> \(\dfrac{x+2}{37}=0\)

=> x+2= 0

=> x=-2