Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2
a) Ta có \(\widehat{AEB}=\widehat{AHB}=90^o\). Tứ giác ABHE nội tiếp
=> \(\widehat{EHC}=\widehat{ABA'}=\widehat{BCA'}\)
=> HE//CA'
Vì CA' _|_ AC => HE _|_ AC
c) Gọi M là trung điểm của AB, N là trung điểm BC
Đường tròn ngoại tiếp ABHE có tâm là M nên M nằm trên đường trung trực của HE
Do HE _|_ AC nên trung trực của HE song song với AC và chứa đường trung bình của tam giác ABC
Do đó trung điểm N của BC nằm trên trung trự của HE
Mặt khác E,F là chân đường vuông góc của B và C hạ xuông AA' nên trung trực của EF đi qua trung điểm N của BC
Vậy N là tâm của đường tròn ngoại tiếp tam giác HEF là 1 điểm cố định cho BC cố định
Bài 1
bổ sung câu c bài hỏi .là : CM \(\frac{DE}{BE}=\frac{BD}{BA}\)
bài làm
a) ta có . tam giác ACO zuông tại C , Tam giác ABO zuông tại B
nên C , B lần lượt nhìn AO zới 1 góc =90 độ
=> ABCO nội tiếp
b) ta có tam giác ABC cân tại A do AB=AC
mà AH là đường cao
nên AH cx là đường trung tuyến
=> CH = HB
=> AO là đường trung trực của CB
c) ta có BD là đường kính của O
nên góc BED = 90 độ
xét 2 tam giác zuông BED zà ABD có
góc BAD = góc BDA ( cùng nhìn \(\widebat{BE}\)
BD chung
=> tam giác BED = tam giác DBA
=> \(\frac{DE}{BE}=\frac{BD}{BA}\)
a: Xét tứ giác OAIC có
\(\widehat{OAI}+\widehat{OCI}=180^0\)
Do đó: OAIC là tứ giác nội tiếp
Xét (O) có
IC là tiếp tuyến
IA là tiếp tuyến
Do đó: OI là tia phân giác của góc COA
Ta có: ΔOAC cân tại O
mà OI là đường phân giác
nên OI⊥AC(1)
Xét (O) có
ΔACB nội tiếp
AB là đường kính
Do đó: ΔACB vuông tại C
Suy ra: CA⊥CB(2)
Từ (1) và (2) suy ra CB//OI
Câu b đề thiếu rồi bạn
Câu c đề sai bởi vì ΔACB vuông tại C rồi nên nếu đường cao AH thì H trùng với C rồi bạn
a, b, c HS tự làm
d, Gợi ý: G' ÎOI mà I G ' I O = 1 3 => G' thuộc (G'; 1 3 R)
A. CM BECD nội tiếp
Tứ giác BECD có \(\widehat{BEC}=90^o=\widehat{BDC}\left(gt\right)\)và cùng nhìn cạnh BC
=> BEDC nội tiếp (đpcm)
B. CM Ax là tiếp tuyến của (O)
Trên nửa mp bờ AB không chứa điểm C, kẻ tiếp tuyến Ay của (O). Ta cần cm Ay trùng với Ax.
Ta có Ax là tiếp tuyến của (O) (cách vẽ)
=> \(\widehat{yAB}=\widehat{ACB}\) ( góc tạo bởi tiếp tuyến & dây cung và góc nội tiếp cùng chắn \(\widebat{AB}\)của đường tròn (O)
mà \(\widehat{ACB}=\widehat{AED}\)( góc ngoài bằng góc trong đối điện của BEDC nội tiếp )
=> \(\widehat{yAB}=\widehat{AED}\)và 2 góc này ở vị trí so le trong
=> Ay//ED
Mà Ax//ED (gt)
=> Ay trùng Ax
=> Ax là tiếp tuyến của (O)