Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{2022}{2021^2+k}\le\frac{2022}{2021^2}\) (với \(k\)là số tự nhiên bất kì)
Ta có:
\(A=\frac{2022}{2021^2+1}+\frac{2022}{2021^2+2}+...+\frac{2022}{2021^2+2021}\)
\(\le\frac{2022}{2021^2}+\frac{2022}{2021^2}+...+\frac{2022}{2021^2}=\frac{2022}{2021^2}.2021=\frac{2022}{2021}\)
Ta có: \(\frac{2022}{2021^2+k}>\frac{2022}{2021^2+2021}=\frac{2022}{2021.2022}=\frac{1}{2021}\)với \(k\)tự nhiên, \(k< 2021\))
Suy ra \(A=\frac{2022}{2021^2+1}+\frac{2022}{2021^2+2}+...+\frac{2022}{2021^2+2021}\)
\(>\frac{1}{2021}+\frac{1}{2021}+...+\frac{1}{2021}=\frac{2021}{2021}=1\)
Suy ra \(1< A\le\frac{2022}{2021}\)do đó \(A\)không phải là số tự nhiên.
Ta có: 202220212+k≤202220212202220212+k≤202220212 (với kklà số tự nhiên bất kì)
Ta có:
A=202220212+1+202220212+2+...+202220212+2021A=202220212+1+202220212+2+...+202220212+2021
≤202220212+202220212+...+202220212=202220212.2021=20222021≤202220212+202220212+...+202220212=202220212.2021=20222021
Ta có: 202220212+k>202220212+2021=20222021.2022=12021202220212+k>202220212+2021=20222021.2022=12021với kktự nhiên, k<2021k<2021)
Suy ra A=202220212+1+202220212+2+...+202220212+2021A=202220212+1+202220212+2+...+202220212+2021
>12021+12021+...+12021=20212021=1>12021+12021+...+12021=20212021=1
Suy ra 1<A≤202220211<A≤20222021do đó AAkhông phải là số tự nhiên.
Ta có: \(\frac{2022}{2021^2+k}\le\frac{2022}{2021^2}\) (với \(k\)là số tự nhiên bất kì)
Ta có:
\(A=\frac{2022}{2021^2+1}+\frac{2022}{2021^2+2}+...+\frac{2022}{2021^2+2021}\)
\(\le\frac{2022}{2021^2}+\frac{2022}{2021^2}+...+\frac{2022}{2021^2}=\frac{2022}{2021^2}.2021=\frac{2022}{2021}\)
Ta có: \(\frac{2022}{2021^2+k}>\frac{2022}{2021^2+2021}=\frac{2022}{2021.2022}=\frac{1}{2021}\)với \(k\)tự nhiên, \(k< 2021\))
Suy ra \(A=\frac{2022}{2021^2+1}+\frac{2022}{2021^2+2}+...+\frac{2022}{2021^2+2021}\)
\(>\frac{1}{2021}+\frac{1}{2021}+...+\frac{1}{2021}=\frac{2021}{2021}=1\)
Suy ra \(1< A\le\frac{2022}{2021}\)do đó \(A\)không phải là số tự nhiên.
Ta có: \(\frac{2022}{2021^2+k}\le\frac{2022}{2021^2}\) (với \(k\)là số tự nhiên bất kì)
Ta có:
\(A=\frac{2022}{2021^2+1}+\frac{2022}{2021^2+2}+...+\frac{2022}{2021^2+2021}\)
\(\le\frac{2022}{2021^2}+\frac{2022}{2021^2}+...+\frac{2022}{2021^2}=\frac{2022}{2021^2}.2021=\frac{2022}{2021}\)
Ta có: \(\frac{2022}{2021^2+k}>\frac{2022}{2021^2+2021}=\frac{2022}{2021.2022}=\frac{1}{2021}\)với \(k\)tự nhiên, \(k< 2021\))
Suy ra \(A=\frac{2022}{2021^2+1}+\frac{2022}{2021^2+2}+...+\frac{2022}{2021^2+2021}\)
\(>\frac{1}{2021}+\frac{1}{2021}+...+\frac{1}{2021}=\frac{2021}{2021}=1\)
Suy ra \(1< A\le\frac{2022}{2021}\)do đó \(A\)không phải là số tự nhiên.
a) \(M=2020+2020^2+...+2020^{10}\)
\(M=\left(2020+2020^2\right)+\left(2020^3+2020^4\right)+...+\left(2020^9+2020^{10}\right)\)
\(M=2020\left(1+2020\right)+2020^3\left(1+2020\right)+...+2020^9\left(1+2020\right)\)
\(M=2021\left(2020+2020^3+...+2020^9\right)⋮2021\).
b) Bạn làm tương tự câu a).
b, \(A=2021+2021^2+...+2021^{2020}\)
\(=2021\left(1+2021\right)+...+2021^{2019}\left(1+2021\right)\)
\(=2022\left(2021+...+2021^{2019}\right)⋮2022\)
Vậy ta có đpcm
B/A
\(=\dfrac{1+\dfrac{2020}{2}+1+\dfrac{2019}{3}+...+1+\dfrac{1}{2021}+1}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2021}+\dfrac{1}{2022}}\)
\(=\dfrac{2022\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2021}+\dfrac{1}{2022}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2021}+\dfrac{1}{2022}}=2022\)
\(2A=\dfrac{2^{2021}-1-1}{2^{2021}-1}=1-\dfrac{1}{2^{2021}-1}\)
\(2B=\dfrac{2^{2022}-1-1}{2^{2022}-1}=1-\dfrac{1}{2^{2022}-1}\)
mà \(2^{2021}-1< 2^{2022}-1\)
nên A<B
A=22020−122021−1A=22020-122021-1
⇒2A=2.(22020−1)22021−1⇒2A=2.(22020-1)22021-1
⇒2A=22021−222021−1⇒2A=22021-222021-1
⇒2A=22021−1−122021−1⇒2A=22021-1-122021-1
⇒2A=1−122021−1⇒2A=1-122021-1
B=22021−122022−1B=22021-122022-1
⇒2B=2.(22021−1)22022−1⇒2B=2.(22021-1)22022-1
a) Ta có A = 1 + 21 + 22 + ... + 22021
2A = 21 + 22 + 23 + ... + 22022
Vậy 2A = 21 + 22 + 23 + ... + 22022
b) 2A - A = ( 21 + 22 + 23 + ... + 22022 ) - ( 1 + 21 + 22 + ... + 22021 )
A = 22022 - 1
Vậy A = 22022 - 1
a)
\(A=1+2^1+2^2+2^3+...+2^{2020}+2^{2021}\)
\(2A=2^1+2^2+2^3+2^4+...+2^{2021}+2^{2022}\)
b)
\(2A=2^1+2^2+2^3+...+2^{2022}\)
\(2A-A=\left(2^1+2^2+2^3+...+2^{2022}\right)-\left(1+2^1+2^2+....+2^{2021}\right)\)
\(A=2^{2022}-1\)
=> đpcm