K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 6 2023

Để tính AB và AC, ta sẽ sử dụng định lý Pythagoras trong tam giác vuông.

Với ∆ABC vuông tại A và BD là phân giác của góc B, ta có:

BD/BC = 3/4

Vì BD/BC = 3/4, ta có thể xác định giá trị của BD và CD:

BD = (3/4) * BC = (3/4) * 20cm = 15cm CD = BC - BD = 20cm - 15cm = 5cm

Với AB > AC, ta có thể gọi AB = x và AC = y (với x > y).

Áp dụng định lý Pythagoras trong tam giác vuông ABC, ta có:

AB^2 = AC^2 + BC^2

x^2 = y^2 + 20^2

Ta cũng biết rằng BD là phân giác của góc B, do đó:

AD = DC = 5cm

Áp dụng định lý Pythagoras trong tam giác vuông ABD, ta có:

AB^2 = AD^2 + BD^2

x^2 = 5^2 + 15^2

x^2 = 25 + 225

x^2 = 250

Từ phương trình trên, ta có x = √250 = 5√10

Do đó, AB = 5√10 cm.

Tiếp theo, ta sẽ tính giá trị của y (AC).

Áp dụng định lý Pythagoras trong tam giác vuông ACD, ta có:

AC^2 = AD^2 + CD^2

y^2 = 5^2 + 5^2

y^2 = 25 + 25

y^2 = 50

Từ phương trình trên, ta có y = √50 = 5√2

Do đó, AC = 5√2 cm.

Tóm lại, AB = 5√10 cm và AC = 5√2 cm.

BD/BC=3/7

=>BD/CD=3/4

=>AB/AC=3/4

=>AB/3=AC/4=k

=>AB=3k; AC=4k

AB^2+AC^2=BC^2

=>25k^2=400

=>k=4

=>AB=12cm; AC=16cm

1:

BC=15+20=35cm

AD là phân gíac

=>AB/BD=AC/CD

=>AB/3=AC/4=k

=>AB=3k; AC=4k

AB^2+AC^2=BC^2

=>25k^2=35^2

=>k=7

=>AB=21cm; AC=28cm

AH=21*28/35=16,8cm

\(AD=\dfrac{2\cdot21\cdot28}{21+28}\cdot cos45=12\sqrt{2}\left(cm\right)\)

2:

BC=căn 12^2+16^2=20cm

HB=AB^2/BC=12^2/20=7,2cm

HC=20-7,2=12,8cm

11 tháng 7 2017

bài nay dễ mà

16 tháng 9 2018

co tra loi gi dau

Ta có DB/AB = DC/AC =>3/AB=4/AC => 4AB=3AC => AB=3/4 AC 
ta lại có BC=3+4=7 cm 
tam giác ABC vuông tại A, theo định lí pitago, ta có BC^2 = AB^2 + AC^2

=> 49= 9/16AC^2 + AC^2 => AC=28/5 => AB=21/5

6 tháng 8 2019

Câu hỏi của Trần Dần - Toán lớp 9 - Học toán với OnlineMath

Em tham khảo nhé!

11 tháng 8 2015

2/AB/AC=3/4 nên AB=3AC/4(1)

Tam giác ABC vuông tại A, đường cao AH. Ta có: 1/AH2=1/AB2+1/AC2. Thay (1) vào rồi bạn giải phương trình sẽ tìm ra được AB, AC, BC từ đó sẽ ra chu vi tam giác ABC

 

Ta có: BD+CD=BC

nên CD=14-8=6

Xét ΔBAC có 

AD là đường phân giác ứng với cạnh BC

nên \(\dfrac{AB}{AC}=\dfrac{BD}{CD}\)

\(\Leftrightarrow\dfrac{AB}{AC}=\dfrac{4}{3}\)

hay \(AB=\dfrac{4}{3}AC\)

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow AC^2\cdot\dfrac{25}{9}=14^2=196\)

\(\Leftrightarrow AC^2=70.56\)

\(\Leftrightarrow AC=8.4\left(cm\right)\)

\(\Leftrightarrow AB=\dfrac{4}{3}\cdot AC=\dfrac{4}{3}\cdot8.4=11.2\left(cm\right)\)

19 tháng 11 2016

Dễ thấy \(AB^2+AC^2=BC^2\left(3^2+4^2=5^2\right)\) => tam giác ABC vuông tại A (pytago đảo)

Áp dụng hệ thức ..... trong tg vuông : \(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}=>\frac{1}{AH^2}=\frac{1}{4^2}+\frac{1}{3^2}=\frac{25}{144}=>25AH^2=144=>AH^2=\frac{144}{25}\)

\(=>AH=\sqrt{\frac{144}{25}}=\frac{12}{5}=2,4\left(cm\right)\)

AD là đg phân giác trong tg ABC

\(=>AD=\frac{2\sqrt{AB.AC.p\left(p-BC\right)}}{AB+AC}\left(p=\frac{AB+AC+BC}{2}\right)\)

\(=>AD=\frac{2\sqrt{AB.AC.\frac{AB+AC+BC}{2}\left(\frac{AB+AC+BC}{2}-BC\right)}}{AB+AC}=\frac{12\sqrt{2}}{7}\left(cm\right)\)

19 tháng 11 2016

quên mất,chưa tính BD,CD

-tính đc các góc B,C rồi suy ra tg ACD , ABD vuông tại D

rồi dùng pytago,có AB,AC,AD tính đc BD,CD