Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
có công cụ để ghi mà. bạn dùng cái đó nó dễ nhìn hơn. chứ thế này thì khó giải lắm
Ta có : x + y = 1
=> x = 1 - y
y = 1 - x , 1 - ( x + y ) = 0
Khi đó : \(\frac{x}{y^3-1}-\frac{y}{x^3-1}+\frac{2\left(x-y\right)}{x^2y^2+3}\)
\(=\frac{1-y}{\left(y-1\right)\left(y^2+y+1\right)}-\frac{1-x}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{2\left(x-y\right)}{x^2y^2+3}\)
\(=\frac{-1}{y^2+y+1}+\frac{1}{x^2+x+1}+\frac{2\left(x-y\right)}{x^2y^2+3}\)
\(=\frac{-\left(x^2+x+1\right)+\left(y^2+y+1\right)}{\left(x^2+x+1\right)\left(y^2+y+1\right)}+\frac{2\left(x-y\right)}{x^2y^2+3}\)
\(=\frac{-x^2-x-1+y^2+y+1}{x^2y^2+x^2y+x^2+xy^2+xy+x+y^2+y+1}+\frac{2\left(x-y\right)}{x^2y^2+3}\)
\(=\frac{-\left(x^2-y^2\right)-\left(x-y\right)}{x^2y^2+xy\left(x+y\right)+x^2+y^2+xy+\left(x+y\right)+1}+\frac{2\left(x-y\right)}{x^2y^2+3}\)
\(=\frac{\left(x-y\right)\left(-x-y-1\right)}{x^2y^2+xy.1+x^2+y^2+xy+1+1}+\frac{2\left(x-y\right)}{x^2y^2+3}\)
\(=\frac{\left(x-y\right)\left(-x-y-1\right)}{x^2y^2+\left(x+y\right)^2+2}+\frac{2\left(x-y\right)}{x^2y^2+3}\)
\(=\frac{-\left(x-y-1\right)\left(x+y\right)}{x^2y^2+3}+\frac{2\left(x-y\right)}{x^2y^2+3}\)
\(=\frac{-\left(x-y-1\right)\left(x+y\right)}{x^2y^2+3}+\frac{2\left(x-y\right)}{x^2y^2+3}\)
\(=\frac{-\left(x-y-1\right)\left(x+y\right)+2\left(x-y\right)}{x^2y^2+3}\)
\(=\frac{\left(x-y\right)\left[-\left(x+y+1\right)+2\right]}{x^2y^2+3}\)
\(=\frac{\left(x-y\right)\left(1-x-y\right)}{x^2y^2+3}\)
\(=\frac{\left(x-y\right)\left[1-\left(x+4\right)\right]}{x^2y^2+3}\)
\(=\frac{\left(x-y\right).0}{x^2y^2+3}=0\)
Vậy : \(\frac{x}{y^3-1}-\frac{y}{x^3-1}+\frac{2\left(x-y\right)}{x^2y^2+3}=0\left(đpcm\right)\)
\(\frac{x^2+\left(x-z\right)^2}{y^2}hay x^2+\frac{\left(x-z\right)^2}{y^2}\)
x2-y=y2-x
<=>(x2-y2)+(x-y)=0
<=>(x-y)(x+y)+(x-y)=0
<=>(x-y)(x+y+1)=0
*)Nếu x-y=0<=>x=y
Tính a theo x ta có
A=x3+x3+3x2(x2+x2)+6x4(x+x)
=2x3+6x4+12x5
*)Nếu x+y+1=0
<=>x=-(y+1)
Tính A theo y ta có
A=(-y-1)3+y3+3(y-1)y[(-y-1)2+y2]+6(-y-1)2y2(-y-1+y)
cái này bạn tự tính
Ta có các nhận xét:
a2≡1(mod3)∨a2≡0(mod3)(1)
a2≡1(mod4)∨a2≡0(mod4)(2)
a)Giả sử trong x;y;z không có số nào chia hết cho 3.
Từ (1) nên ta có x2≡y2≡1(mod3)
Nên z2≡1+1≡2(mod3): vô lý nên ta có đpcm.
b) Tương tự câu a, ta cm được tồn tại 1 số trong x;y;z chia hết cho 4. Vậy ta có đpcm.
Với x, y là hai số dương, dễ dàng chứng minh x + y 2,
do x + y = 2 => 0 < xy ≤ 1 (1)
Ta lại có: 2xy( x2 + y2) ≤
=> 0 < 2xy(x2 + y2) ≤ (x+y)4/4 = 4
=> 0 < xy( x2 + y2) ≤ 2 (2)
Nhân (1) với (2) theo vế ta có: x2y2 ( x2 + y2) ≤ 2 (đpcm)
Dấu “=” xảy ra khi x = y = 1