Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,Áp dụng định lý Py ta go vào tam giác vuông ABC có :
AB^2+AC^2=BC^2
=> AC^2=BC^2 - AB^2
=> AC^2=15^2-9^2=144
=> AC = 12
Diện tích tam giác ABC là: 9.12/2=54
a) Xét ΔDBA và ΔFBC có:
\(\widehat{CBA}:chung\)
\(\widehat{ADB}=\widehat{CFB}\) \(=90^0\)
=> ΔDBA∼ΔFBC (g.g)
\(\Rightarrow\frac{DB}{AB}=\frac{BF}{BC}\)
Xét ΔABC và ΔDBF có:
\(\widehat{CBA}: chung\)
\(\frac{DB}{AB}=\frac{BF}{BC}\) (cmtrn)
=> ΔABC∼ΔDBF (c.g.c)
a) Xét ΔEHB vuông tại E và ΔDHC vuông tại D có
\(\widehat{EHB}=\widehat{DHC}\)(hai góc đối đỉnh)
Do đó: ΔEHB∼ΔDHC(g-g)
Suy ra: \(\dfrac{HE}{HD}=\dfrac{HB}{HC}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(\dfrac{HE}{HB}=\dfrac{HD}{HC}\)
Xét ΔHED và ΔHBC có
\(\dfrac{HE}{HB}=\dfrac{HD}{HC}\)(cmt)
\(\widehat{EHD}=\widehat{BHC}\)(hai góc đối đỉnh)
Do đó: ΔHED∼ΔHBC(c-g-c)
b) Xét ΔADB vuông tại D và ΔAEC vuông tại E có
\(\widehat{EAC}\) chung
Do đó: ΔADB∼ΔAEC(g-g)
Suy ra: \(\dfrac{AD}{AE}=\dfrac{AB}{AC}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)
Xét ΔADE và ΔABC có
\(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)(cmt)
\(\widehat{EAD}\) chung
Do đó: ΔADE∼ΔABC(c-g-c)