K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 2 2023

Giả sử p là 1 số nguyên tố >3, do p không chia hết cho 3 nên p có dạng 3k + 1 hoặc 3k + 2 nhưng do p +4 là số nguyên tố nên p không thể có dạng 3k + 2 vậy p có dạng 3k +1. Vậy p + 8 = 3k + 9 chia hết cho 3 nên nó là hợp số

 
6 tháng 2 2023

Theo đề ra, ta có:

p là số nguyên tố (p > 3)

Vì p không chia hết cho 3 nên p có dạng là: p = 3k + 1 hoặc p = 3k + 2

Mà p + 4 là số nguyên tố nên loại bỏ dạng p = 3k + 2

=> p có dạng 3k + 1

=> p + 8 = 3k + 1 + 8 = 3k + 9 = 3(k + 3) chia hết cho 3 

Mà p + 8 > 3

=> p + 8 là hợp số.

13 tháng 5 2016

1.+/n ko chia het cho3
*Voi n=3k+1(dk cua k)

=>n^2-1=(3k+1)^2-1=9k^2+6k+1-1=9k^2+6k

=3(3k^2+2k) chia het cho 3

ma n^2-1>3 voi n>2;n ko chia het cho 3

=>n^2-1 la hop so tai n chia 3 du 1(n>2)

*Voi n=3p+2(dk cua p)

=>n^2-1=(3p+2)^2-1=9p^2+12p+4-1

=9p^2+12p+3

=3(3p^2+4p+1) chia het cho 3

ma n^2-1>3 voi n>2;n ko chia het cho 3

=>n^2-1 la hop so tai n chia 3 du 2(n>2)

=>n^2-1 la hop so voi moi n >2;n ko chia het cho 3

=>n^2-1 và n^2+1 ko thể đồng thời là

số nguyên tố voi n>2;n ko chia hết cho 3

21 tháng 12 2016

Vì p là số nguyên tố lớn hơn 3. khi chia p cho 3 ta có 2 dạng: p=3k+1 ; p=3k+2 (k thuộc N*)

Nếu p= 3k+2 => p+4= 3k +2 + 4 = 3k + 6 chia hết choa 2 và lớn hơn 2.

=> p+4 là hợp số ( trái với đề, loại)

vậy p = 3k+1.

=> 8p + 1 = 8(3k+1)+1 = 24k+8 +1=24k+9 chia hết cho 3 và lớn hơn 3.

=> 8p+1 là hợp số.

Vậy 8p+1 là hợp số(đpcm)

14 tháng 11 2017

B2

Vì p nguyên tố > 3 nên p lẻ => p^2 lẻ => p^2 + 2003 chia hết cho 2

Mà p^2+2003 > 2 => p^2+2003 là hợp số

k mk nha

14 tháng 11 2017

bài 2 số nguyên tố lớn hơn 3 chỉ có thể là số lẻ

=> số lẻ nhân số lẻ bằng một số lẻ 

vì 2003 là số lẻ nên  số lẻ cộng số lẻ bang số chẵn lớn hơn  2 (vì p^2 là một số nguyên dương)

=> p^2 +2003  là hợp số

22 tháng 10 2016

p là số nguyên tố lớn hơn 5 nên p có dạng 3k+1 hoặc 3k+2.

+Nếu p = 3k+1 thì 2p+1=2(3k+1)+1=6k+3 chia hết cho 3 => 2p+1 không phải số nguyên tố => loại

+Vậy p có dạng 3k+2

Khi đó 4p+1=4(3k+2)+1=12k+9 chia hết cho 3.

Vậy 4p+1 là hợp số,

22 tháng 10 2016

cho p và 2p +1 đều là số nguyên tố (p>5).Hỏi 4p +1 là sồ nguyên tố hay hợp số  b, p và p+4 là nguyên tố lớn hơn 3 . chứng tỏ rằng p+8 là hợp số c, với p là nguyên tố và một trong hai số 8p-1 và 8p+1 là số nguyên tố thì số còn lại là số nguyên tố hay hợp số

p là số nguyên tố lớn hơn 5 nên p có dạng 3k+1 hoặc 3k+2.

+Nếu p = 3k+1 thì 2p+1=2(3k+1)+1=6k+3 chia hết cho 3 => 2p+1 không phải số nguyên tố => loại

+Vậy p có dạng 3k+2

Khi đó 4p+1=4(3k+2)+1=12k+9 chia hết cho 3.

Vậy 4p+1 là hợp số,

25 tháng 10 2015

Vì p > 3

=>p có 2 dạng là 3k+1 và 3k+2

Xét p=3k+1=>p+4=3k+1+4=3k+5=3.(k+1)+2 là số nguyên tố.=>p+8=3k+1+8=3k+9=3.(k+3) là hợp số

Xét p=3k+2=>p+4=3k+2+4=3k+6=3.(k+2) là hợp số( loại)

Vậy p+8 là hợp số

25 tháng 10 2015

Vì p là số nguyên tố lớn hơn 3

=>p có 2 dạng là 3k+1 và 3k+2

*Xét p=3k+1=>p+4=3k+1+4=3k+5=3.(k+1)+2 là số nguyên tố.

=>p+8=3k+1+8=3k+9=3.(k+3) là hợp số

*Xét p=3k+2=>p+4=3k+2+4=3k+6=3.(k+2) là hợp số(vô lí)

Vậy p+8 là hợp số