Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 1×3+3×5+5×7+...+ 97×99+99×101
6A= 1×3×6+3×5×6+5×7×6+...+97×99×6+99×101×6
6A= 1×3×(5+1)+3×5×(7-1)+5×7×(9-3)+...+97×99×(101-95)+99×101×(103-97)
6A = 1×3×5-1×3+3×5×7-1×3×5+5×7×9-3×5×7+7×9×11-5×7×9+,,,+97×99×101-95×97×99+99×101×103-97×99×101
6A= 1×3+99×101×103
6A= 1029900
A= 171650
S = 1/2 . ( 1/2 -1/2 + 1/6 -1/2 + ...+ 1/99 - 1/100)
S= 1/2 . (1-2 - 1/100)
S=1/2 . 49/100
S= 49/200
\(S=\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{98.100}\)
=>2S=\(2.\left(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{98.100}\right)\)
=\(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{98.100}\)
=\(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{98}-\frac{1}{100}\)
=\(\frac{1}{2}-\frac{1}{100}=\frac{50}{100}-\frac{1}{100}=\frac{49}{100}\)
=>S=\(\frac{49}{100}:2=\frac{49}{100}.\frac{1}{2}=\frac{49}{200}\)
e)đặt A=2^2+4^2+6^2+...+98^2+100^2
=2.2+4.4+6.6+...+98.98+100.100
=2.(4-2)+4.(6-2)+6.(8-2)+...+98.(100-2)+100.(102-2)
=2.4-4+4.6-8+6.8-12+...+98.100-196+100.102-200
=(2.4+4.6+6.8+...+98.100+100.102)-(4+8+12+...+196+200)
Đặt B=2.4+4.6+6.8+...+98.100+100.102
6B=2.4.6+4.6.6+...+98.100.6+100.102.6
=2.4.6+4.6.(8-2)+...+98.100.(102-96)+100.102.(104-98)
=2.4.6+4.6.8-2.4.6+...+98.100.102-96.98.100+100.102.104-98.100.102
=(2.4.6-2.4 .6)+...+(98.100.102-98.100.102)+100.102.104
=100.102.104
B=100.102.104/6=100.17.104=176800
Đặt C=4+8+12+...+196+200 Có 50 số hạng Công thức tính số các số hạng (số cuối-số đầu):khoảng cách+1
=(200+4).50/2=5100 Công thức tính tổng số các số hạng (số cuối +số đầu ). số các số hạng :2
Ta có A=176800-5100=171700
f) làm tương tự,hơi dài nên đành làm vậy,xin lỗi nha,nếu mà khó quá kết bạn với tớ ,tớ giải cho nha
Gợi ý đặt A=..
=...
=...
Đặt B=...
6B=...
=...
=...
Đặt C=...
=...
Ta có
\(\dfrac{x}{2.4}+\dfrac{x}{4.6}+\dfrac{x}{6.8}+...+\dfrac{x}{98.100}=2\\ \Rightarrow x.\left(\dfrac{1}{2.4}+\dfrac{1}{4.6}+\dfrac{1}{6.8}+...+\dfrac{1}{98.100}\right)=2\\ \Rightarrow x.\left[\dfrac{1}{2}.\left(\dfrac{2}{2.4}+\dfrac{2}{4.6}+\dfrac{2}{6.8}+...+\dfrac{2}{98.100}\right)\right]=2\\ \Rightarrow x.\left[\dfrac{1}{2}.\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{8}+...+\dfrac{1}{98}-\dfrac{1}{100}\right)\right]=2\Rightarrow x.\left[\dfrac{1}{2}.\left(\dfrac{1}{2}-\dfrac{1}{100}\right)\right]=2\\ \Rightarrow x.\left[\dfrac{1}{2}.\left(\dfrac{50}{100}-\dfrac{1}{100}\right)\right]=2\\ \Rightarrow x.\left[\dfrac{1}{2}.\dfrac{49}{100}\right]=2\\ \Rightarrow x.\dfrac{49}{200}=2\\ \Rightarrow x=2:\dfrac{49}{200}\\ \Rightarrow x=2.\dfrac{200}{49}\\ \Rightarrow x=\dfrac{400}{49}\)
x/2.4+x/4.6+...+x/98.100=2
<=>x(1/2.4+1/4.6+...+1/98.100)=2
<=>1/2x(1/2-1/4+1/4-1/6+...+1/98-1/100)=2
<=>1/2x(1/2-1/100)=2
<=>1/2x49/100=2
<=>49/200x=2
<=>x=400/49