K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 9 2016

Xét với x > 0 : \(\sqrt{1+\left(x-1\right)^2+\frac{\left(x-1\right)^2}{x^2}}+\frac{x-1}{x}=\sqrt{\frac{\left(x^2-x+1\right)^2}{x^2}}+\frac{x-1}{x}\)

\(=\frac{x^2-x+1}{x}+\frac{x-1}{x}=\frac{x^2}{x}=x\)

Áp dụng với x = 2017 suy ra biểu thức cần tính có giá trị bằng 2017

21 tháng 7 2016

\(A=\sqrt{2016^2+\frac{2017}{2017}+\frac{2016^2-1}{2017^2}-\frac{1}{2017^2}}+\frac{2016}{2017}\)

\(A=\sqrt{2016^2+\frac{1}{2017^2}+\frac{2015.2017}{2017^2}+\frac{2017}{2017}}+\frac{2016}{2017}\)

\(A=\sqrt{2016^2+2.2016.\frac{1}{2017}+\frac{1^2}{2017^2}}+\frac{2016}{2017}\)

\(A=\sqrt{\left(2016+\frac{1}{2017}\right)^2}+\frac{2016}{2017}\)

\(A=\left(2016+\frac{1}{2017}\right)+\frac{2016}{2017}\)

A = 2017

Chúc bạn làm bài tốt

 

 

 

16 tháng 9 2016

Đặt 2017 = a thì ta có 

A = \(\sqrt{1+\left(a-1\right)^2+\frac{\left(a-1\right)^2}{a^2}}+\frac{a-1}{a}\)

\(\sqrt{\frac{\left(a^2-a+1\right)^2}{1a^2}}+\frac{a-1}{a}\)

= a

Vậy cái đó bằng 2017

14 tháng 1 2016

a)7/23<11/28

b)2014/2015+2015/2016>2014+2015/2015+2016

c) A= gì vậy

7 tháng 7 2017

Với mọi \(n\in N.\)ta có:

\(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{\left(n+1\right)^2n-n^2\left(n+1\right)}=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}.\)Do đó

\(P=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2016}}-\frac{1}{\sqrt{2017}}.=1-\frac{1}{\sqrt{2017}}=\frac{\sqrt{2017}-1}{\sqrt{2017}}.\)

7 tháng 8 2015

\(\sqrt{1+n^2+\frac{n^2}{\left(n+1\right)^2}}=\sqrt{\left(1+n-\frac{n}{n+1}\right)^2}=1+n-\frac{n}{n+1}\text{ }\left(n>0\right)\)

\(P==1+2015-\frac{2015}{2016}+\frac{2015}{2016}=2016\)

7 tháng 8 2015

\(\left(1+n-\frac{n}{n+1}\right)^2=1+n^2+\frac{n^2}{\left(n+1\right)^2}+2\left(n-\frac{n}{n+1}-\frac{n^2}{n+1}\right)\)

\(=1+n^2+\frac{n^2}{\left(n+1\right)^2}+2.\frac{n^2+n-n-n^2}{n+1}\)

\(=1+n^2+\frac{n^2}{\left(n+1\right)^2}\)

6 tháng 9 2015

Đặt 2015 = a Ta có :

\(\sqrt{1+a^2+\frac{a^2}{\left(a+1\right)^2}}+\frac{a}{a+1}\)

\(=\sqrt{\frac{\left(a+1\right)^2+a^2\left(a+1\right)^2+a^2}{\left(a+1\right)^2}}+\frac{a}{a+1}\)

\(=\sqrt{\frac{\left(a+1\right)^2+a^2\left(a^2+2a+1+1\right)}{\left(a+1\right)^2}}+\frac{a}{a+1}\)

\(=\sqrt{\frac{\left(a+1\right)^2+a^4+2a^3+2a^2}{\left(a+1\right)^2}}+\frac{a}{a+1}\)

\(=\sqrt{\frac{a^4+2a^2\left(a+1\right)+\left(a+1\right)^2}{\left(a+1\right)^2}}+\frac{a}{a+1}\)

\(=\sqrt{\frac{\left(a^2+a+1\right)^2}{\left(a+1\right)^2}}+\frac{a}{a+1}\)

\(\frac{a^2+a+1}{a+1}+\frac{a}{a+1}=\frac{a^2+2a+1}{a+1}=\frac{\left(a+1\right)^2}{a+1}=a+1=2015+1=2016\)

14 tháng 6 2017

a )\(\sqrt{6+\sqrt{8}+\sqrt{12}+\sqrt{24}}\)

=\(\sqrt{2+3+1+2\sqrt{2.1+2\sqrt{3}.1+2\sqrt{2}.\sqrt{3}}}\)

=\(\sqrt{\left(\sqrt{2}+\sqrt{3}+1\right)^2}\)

=\(\sqrt{2}+\sqrt{3}+1\)