Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x^3-3x^2+5x+2007=0
nên \(x\simeq-11,57\)
y^3-3y^2+5y-2013=0
nên \(y\simeq13,57\)
=>x+y=2
\(A=\frac{y^2}{\left(3x\right)^2-2\times3x\times2y+\left(2y\right)^2+y^2}=\frac{y^2}{\left(3x-2y\right)^2+y^2}\)
Tử >= 0 và mẫu >= 0 với điều kiện x = y = 0
nên GTNN không xảy ra khi phân tích như thế này
\(\left(x+y\right)\left(\frac{1}{x}+\frac{1}{y}\right)=1+\frac{x}{y}+1+\frac{y}{x}=2+\frac{x}{y}+\frac{y}{x}\)
Áp dụng BĐT cô si ,ta có:
\(\frac{x}{y}+\frac{y}{x}\ge2\sqrt{\frac{x\cdot y}{y\cdot x}}=2\)
Vậy ta được đpcm
ta có:
\(a+\frac{1}{a}-2=\left(\sqrt{a}\right)^2+\left(\frac{1}{\sqrt{a}}\right)^2-2\sqrt{a\cdot\frac{1}{a}}=\left(\sqrt{a}+\frac{1}{\sqrt{a}}\right)^2\ge0\Rightarrow a+\frac{1}{a}\ge2\)
Vì a và 1/a cùng dấu nên 2 căn (a*1/a) lớn hơn 0 nha
a) \(x.\left(x+4\right)\left(x-4\right)-\left(x^2+1\right)\left(x^2-1\right)=x.\left(x^2-16\right)-\left(x^4-1\right)=x^3-16x-x^4+1\)
ý này ko rút gọn được hết đâu.
b) \(\left(y-3\right)\left(y+3\right)\left(y^2+9\right)-\left(y^2+2\right)\left(y^2-2\right)=\left(y^2-9\right)\left(y^2+9\right)-\left(y^4-4\right)\)
\(=y^4-81-y^4+4=-77\)
c) \(\left(a+b-c\right)^2-\left(a-c\right)^2-2ab+2bc=a^2+b^2+c^2+2ab-2bc-2ac-a^2+2ac-c^2-2ab+2bc=b^2\)
a) đk: \(x\ne\left\{0;2\right\}\)
Ta có:
\(M=\frac{x}{x-2}\div\frac{2x}{x^2-2x}\)
\(M=\frac{x}{x-2}\cdot\frac{x\left(x-2\right)}{2x}\)
\(M=\frac{x}{2}\)
b) \(x^2-3x=0\Leftrightarrow x\left(x-3\right)=0\Rightarrow\orbr{\begin{cases}x=0\left(ktm\right)\\x=3\end{cases}}\)
Tại x = 3 thì giá trị của M là: \(M=\frac{3}{2}\)
c) Để \(M\ge0\Leftrightarrow\frac{x}{2}\ge0\Rightarrow x\ge0\)
Vậy khi \(x\ge0\Leftrightarrow M\ge0\)
Với x < 0 và y > = 0, Ta có:
M = 3x + 3|x| - 5y + 5|y| + 6 = 3x - 3x - 5y + 5y + 6 = 6