Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
Do (P) qua M và N nên:
\(\left\{{}\begin{matrix}a-b+4=7\\16a-4b+4=4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-1\\b=-4\end{matrix}\right.\)
b.
Do (P) có trục đối xứng x=2 và qua A nên:
\(\left\{{}\begin{matrix}-\dfrac{b}{2a}=2\\4a+2b+4=-4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4a+b=0\\4a+2b=-8\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=2\\b=-8\end{matrix}\right.\)
3: \(\Leftrightarrow\left[{}\begin{matrix}2x-1=x+2\left(x>=\dfrac{1}{2}\right)\\2x-1=-x-2\left(x< \dfrac{1}{2}\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\left(nhận\right)\\x=-\dfrac{1}{3}\left(nhận\right)\end{matrix}\right.\)
\(1,ĐK:x\ge1\\ PT\Leftrightarrow2x=4\Leftrightarrow x=2\left(tm\right)\\ 2,\Leftrightarrow2x-5=x^2-8x+16\left(x\ge4\right)\\ \Leftrightarrow x^2-10x+21=0\\ \Leftrightarrow\left[{}\begin{matrix}x=3\left(ktm\right)\\x=7\left(tm\right)\end{matrix}\right.\\ 3,\Leftrightarrow\left[{}\begin{matrix}2x-1=x+2\left(x\ge\dfrac{1}{2}\right)\\1-2x=x+2\left(x< \dfrac{1}{2}\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\left(tm\right)\\x=-\dfrac{1}{3}\left(tm\right)\end{matrix}\right.\)
a)\(A=\left\{2,3,4,5\right\}\)
b)\(B=\left\{-2,-1,0,1,2\right\}\)
c)\(C=\left\{-3;0;3;6;9\right\}\)
d)\(A=\left\{3;4;7;12;19\right\}\)
a)\(n\in\)\(N^*\); \(3< n^2< 30\Leftrightarrow\sqrt{3}< n< \sqrt{30}\)
\(\Rightarrow n=\left\{2;3;4;5\right\}\)
\(\Rightarrow A=\left\{2;3;4;5\right\}\)
b)\(\left|n\right|< 3\Leftrightarrow-3< n< 3\) mà \(n\in Z\)
\(\Rightarrow n=\left\{-2;-1;0;1;2\right\}\)
\(\Rightarrow B=\left\{-2;-1;0;1;2\right\}\)
c)Các phần tử của C là x ; x=3k với k nguyên và thỏa mãn \(-4< x< 12\)
\(\Rightarrow x=\left\{-3;0;3;6;9\right\}\) (với các k lần lượt là \(-1;0;1;2;3\))
\(\Rightarrow C=\left\{-3;0;3;6;9\right\}\)
d)Các phần tử của A có dạng \(n^2+3\) với \(n\in N;n< 5\Rightarrow n=\left\{0;1;2;3;4\right\}\)
\(\Rightarrow A=\left\{3;4;7;12;19\right\}\)
A
lấy bán kính chia cho độ dài cung sẽ ra được số đo radian