K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2016

\(\left(x-2\right)\left(x-3\right)=x^2-5x+7=x^2-2.x.\frac{5}{2}+\left(\frac{5}{2}\right)^2+\frac{3}{4}=\left(x-\frac{5}{2}\right)^2+\frac{3}{4}\)

Vì \(\left(x-\frac{5}{2}\right)^2\ge0\)

nên \(\left(x-\frac{5}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Vậy \(Min_{\left(x-2\right)\left(x-3\right)+1}=\frac{3}{4}\)khi \(x-\frac{5}{2}=0\Rightarrow x=\frac{5}{2}\)

25 tháng 4 2018

\(X=0\)

25 tháng 4 2018

tổng trên bằng bn vậy bạn

14 tháng 11 2021

\(N=\left|x+1\right|+\left|2-x\right|+\left|x+3\right|\\ N\ge\left|x+1+2-x\right|+\left|x+3\right|\\ N\ge3+\left|x+3\right|\ge3\\ N_{min}=3\Leftrightarrow\left|x+3\right|=0\Leftrightarrow x=-3\)

14 tháng 11 2021

à sai ròi

7 tháng 10 2018

lớp 8?

\(A=\left(x-1\right)\left(x+6\right)\left(x+2\right)\left(x+3\right)+2045\)

\(=\left(x^2+6x-x-6\right)\left(x^2+3x+2x+6\right)+2045\)

\(=\left(x^2+5x-6\right)\left(x^2+5x+6\right)+2045\)

\(=\left(x^2+5x\right)^2-6^2+2045\)

\(=\left(x^2+5x\right)^2+2009\ge2009\)

Dấu "=" xày ra khi x2+5x=0  <=> x=0 hoặc x=-5

Vậy MinA=2009 khi x=0 hoặc x=-5

7 tháng 10 2018

\(A=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)+2045\)

\(A=\left[\left(x-1\right)\left(x+6\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]+2045\)

\(A=\left(x^2+5x-6\right)\left(x^2+5x+6\right)+2045\)

\(A=\left(x^2+5x\right)^2-36+2045\)

\(A=\left(x^2+5x\right)^2+2009\)

Vì \(\left(x^2+5x\right)^2\ge0\Rightarrow\left(x^2+5x\right)^2+2009\ge2009\)

\(\Rightarrow A\ge2009\)

=> GTNN của A bằng 2009 

Dấu '=' xảy ra khi \(\left(x^2+5x\right)^2=0\Leftrightarrow x^2+5x=0\Leftrightarrow x\left(x+5\right)=0\)

=> x = 0 hoặc x + 5 = 0 <=>  x = -5

Vậy GTNN của A bằng 2009

Địt con cụ

7 tháng 8 2020

Dễ thấy x càng lớn thì A càng lớn

vậy ko có Max

Tìm Min \(A=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)+2020\)

\(=\left(x-1\right)\left(x+6\right)\left(x+2\right)\left(x+3\right)+2020\)

\(=\left(x^2+5x-6\right)\left(x^2+5x+6\right)+2020\)

Đặt \(x^2+5x=a\)

\(\Rightarrow A=\left(a-6\right)\left(a+6\right)+2020\)

\(=a^2-6a+6a-36+2020\)

\(=a^2+1984\ge1984\left(a^2\ge0\right)\)

Vậy Min A = 1984 

Dấu "=" xảy ra khi \(a=0\Leftrightarrow x^2+5x=0\Leftrightarrow\orbr{\begin{cases}x=0\\x+5=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)