Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
. xét tam giác ABD và tam giác ACE có
. A là góc chung .
. góc E = góc D = 90 độ (gt)
.AB=AC(gt)
=> tam giác ABD = tam giác ACE ( cạnh huyền góc nhọn )
=> BD = CE ( 2 cạnh tương ứng )
b/
Ta có : góc B = góc C ( tam giác ABC cân )
Mà góc B = B1 + B2
C= C1 + C2
Ta lại có : B1 = C1( tam giác ABD = tam giác ACE) ; góc B= góc C
=> góc B2 = C2
=> tam giác BHC cân tại B
c/
ta có : AB= AC ( tam giác ABC cân )
=> A thuộc đường trung trực của BC (1)
Ta lại có : HB=HC (tam giác BHC cân )
=> H thuộc đường trung trực của BC (2)
từ (1) và (2) suy ra : AH là đường trung trực của BC .
( Đường trung trực là đường đi qua trung điểm và cách đều 2 đầu mút của điểm đó )
CÂU D MÌNH KHÔNG BIẾT !!! XIN LỖI NHA .
a). Xét tam giác ABD và tam giác ACE có
. A là góc chung .
. Góc E = góc D = 90 độ (gt)
.AB=AC(gt)
=> tam giác ABD = tam giác ACE ( cạnh huyền góc nhọn )
=> BD = CE ( 2 cạnh tương ứng )
b) Ta có : góc B = góc C ( tam giác ABC cân )
Mà góc B = B1 + B2
C= C1 + C2
Ta lại có : B1 = C1( tam giác ABD = tam giác ACE) ; góc B= góc C
=> góc B2 = C2
=> tam giác BHC cân tại B
c) Ta có : AB= AC ( tam giác ABC cân )
=> A thuộc đường trung trực của BC (1)
Ta lại có : HB=HC (tam giác BHC cân )
=> H thuộc đường trung trực của BC (2)
Từ (1) và (2) suy ra : AH là đường trung trực của BC .
( Đường trung trực là đường đi qua trung điểm và cách đều 2 đầu mút của điểm đó )
Bài 1 :
Kẻ dường thẳng x đi qua trung điểm H của ED và BC => cần chứng minh x⊥ED
Lấy điểm I trên x sao cho DI=EI ( I nằm trên nửa mặt chứa A bờ ED )
=>ΔIEH = ΔIDH (= c.c.c)
=>EHI=IHD=180o : 2=90o
=>đpcm