Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A\)xác định \(\Leftrightarrow x^2y^2+1+\left(x^2-y\right)\left(1-y\right)\ne0\)
\(\Leftrightarrow x^2y^2+1+x^2-x^2y-y+y^2\ne0\)
\(\Leftrightarrow\left(x^2y^2+y^2\right)+\left(x^2+1\right)-\left(x^2y+y\right)\ne0\)
\(\Leftrightarrow y^2\left(x^2+1\right)+\left(x^2+1\right)-y\left(x^2+1\right)\ne0\)
\(\Leftrightarrow\left(x^2+1\right)\left(y^2-y+1\right)\ne0\)
\(\Leftrightarrow\left(x^2+1\right)\left[\left(y-\frac{1}{2}\right)^2+\frac{3}{4}\right]\ne0\)
Ta có: \(\hept{\begin{cases}x^2+1>0\forall x\\\left(y-\frac{1}{2}\right)^2+\frac{3}{4}>0\forall y\end{cases}}\)\(\Leftrightarrow\left(x^2+1\right)\left[\left(y-\frac{1}{2}\right)^2+\frac{3}{4}\right]>0\forall x;y\)
\(\Leftrightarrow\left(x^2+1\right)\left[\left(y-\frac{1}{2}\right)^2+\frac{3}{4}\right]\ne0\forall x;y\)
\(\Leftrightarrow A\ne0\forall x;y\)
\(a,\left(\frac{x^2-1}{x^4-x^2+1}-\frac{1}{x^2+1}\right)\left(x^4+\frac{1-x^4}{1+x^2}\right)\)
\(=\frac{\left(x^2-1\right)\left(x^2+1\right)-x^4+x^2-1}{\left(x^4-x^2+1\right)\left(x^2+1\right)}\left(x^4+1-x^2\right)\)
\(=\frac{x^4-1-x^4+x^2-1}{x^2+1}\)
\(=\frac{x^2+2}{x^2+1}\)
b, biển đổi \(M=1-\frac{3}{x^2+1}\)
M bé nhất khi \(\frac{3}{x^2+1}\)lớn nhất
\(\Leftrightarrow x^2+1\)bé nhất \(\Leftrightarrow x^2=0\)
\(\Rightarrow x=0\Rightarrow\)M bé nhất =-2
theo nghiệm Fx=Gx mũ 2
suy ra x mũ 2 +1 mũ x 2
suy ra chịch chịch chịch
Mình ko chắc lắm :
Áp dụng BĐT AM - GM ta có :
\(M=\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{x^2}\right)\)
\(=\frac{x^2y^2+1}{y^2}.\frac{x^2y^2+1}{x^2}=\frac{x^4y^4+2x^2y^2+1}{x^2y^2}\)
\(=x^2y^2+\frac{1}{x^2y^2}+2=x^2y^2+\frac{1}{256x^2y^2}+\frac{255}{256x^2y^2}+2\)
\(\ge2\sqrt{x^2y^2.\frac{1}{256x^2y^2}}+\frac{255}{256.\left(xy\right)^2}+2\)
\(\ge2.\frac{1}{16}+\frac{255}{256.\left(\frac{\left(x+y\right)^2}{4}\right)^2}+2\)
\(=\frac{1}{8}+\frac{255}{256.\left(\frac{1}{4}\right)^2}+2=\frac{289}{16}\)
Khi \(x=y=\frac{1}{2}\)
Chúc bạn học tốt !!!
khai triển ra còn 4x^2+4y^2+1/x^2+1/y^2+8 =4(x^2+y^2)+(1/x^2+1/y^2)+8
>/ 4.(x+y)^2/2+8/(x+y)^2+8=18
"=" khi x=y=1/2
Đặt \(2x+\frac{1}{x}=a;2y+\frac{1}{y}=b\)
Ta có \(a^2+b^2>=2ab=>2\left(a^2+b^2\right)>=a^2+b^2+2ab=\left(a+b\right)^2\)
=>\(a^2+b^2>=\frac{\left(a+b\right)^2}{2}\)
Ta cần tìm giá trị nhỏ nhất của a+b
ta có \(a+b=2x+\frac{1}{x}+2y+\frac{1}{y}=2\left(x+y\right)+\frac{1}{x}+\frac{1}{y}=2+\frac{1}{x}+\frac{1}{y}\)
Áp dụng BĐT cauchy \(\frac{1}{x}+\frac{1}{y}>=\frac{4}{x+y}\)
=>\(a+b>=2+\frac{4}{x+y}=6\)
=>a\(a^2+b^2>=\frac{6^2}{2}=18\)
=>Min \(\left(2x+\frac{1}{x}\right)^2+\left(2y+\frac{1}{y}\right)^2\)=18
Dấu bằng xảy ra khi \(x=y=\frac{1}{2}\)
=1 đó bạn nhớ duyệt cho mình nha
Bạn giải rõ giúp mình với