Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$A=1+(3+3^2+3^3)+(3^4+3^5+3^6)+....+(3^{2014}+3^{2015}+3^{2016})$
$=1+3(1+3+3^2)+3^4(1+3+3^2)+...+3^{2014}(1+3+3^2)$
$=1+3.13+3^4.13+....+3^{2014}.13$
$=1+13(3+3^4+...+3^{2014})$
$\Rightarrow A-1\vdots 13(1)$
Mặt khác:
$A=1+(3+3^2+3^3+3^4)+....+(3^{2013}+3^{2014}+3^{2015}+3^{2016})$
$=1+3(1+3+3^2+3^3)+....+3^{2013}(1+3+3^2+3^3)$
$=1+(3+...+3^{2013})(1+3+3^2+3^3)$
$=1+40(3+....+3^{2013})$
$\Rightarrow A-1\vdots 5(2)$
Từ $(1); (2)$ mà $(5,13)=1$ nên $A-1\vdots (5.13)$ hay $A-1\vdots 65$
$\Rightarrow A$ chia $65$ dư $1$
a: (x-3)(y+1)=15
=>\(\left(x-3\right)\left(y+1\right)=1\cdot15=15\cdot1=\left(-1\right)\cdot\left(-15\right)=\left(-15\right)\cdot\left(-1\right)=3\cdot5=5\cdot3=\left(-3\right)\cdot\left(-5\right)=\left(-5\right)\cdot\left(-3\right)\)
=>(x-3;y+1)\(\in\){(1;15);(15;1);(-1;-15);(-15;-1);(3;5);(5;3);(-3;-5);(-5;-3)}
=>(x,y)\(\in\){(4;14);(18;0);(2;-16);(-12;-2);(6;4);(8;2);(0;-6);(-2;-4)}
b: Sửa đề:\(m=1+3+3^2+3^3+...+3^{99}+3^{100}\)
\(m=1+3+\left(3^2+3^3+3^4\right)+\left(3^5+3^6+3^7\right)+...+\left(3^{98}+3^{99}+3^{100}\right)\)
\(=4+3^2\left(1+3+3^2\right)+3^5\left(1+3+3^2\right)+...+3^{98}\left(1+3+3^2\right)\)
\(=4+13\left(3^2+3^5+...+3^{98}\right)\)
=>m chia 13 dư 4
\(m=1+3+3^2+...+3^{99}+3^{100}\)
\(=1+\left(3+3^2+3^3+3^4\right)+...+\left(3^{97}+3^{98}+3^{99}+3^{100}\right)\)
\(=1+3\left(1+3+3^2+3^3\right)+3^5\left(1+3+3^2+3^3\right)+...+3^{97}\left(1+3+3^2+3^3\right)\)
\(=1+40\left(3+3^5+...+3^{97}\right)\)
=>m chia 40 dư 1
\(A=1+3+3^2+3^3+...+3^{2022}\)
\(=1+\left(3+3^2+3^3\right)+...+\left(3^{2020}+3^{2021}+3^{2022}\right)\)
\(=1+3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+...+3^{2020}\left(1+3+3^2\right)\)
\(=1+13\left(3+3^4+...+3^{2020}\right)\)
=>A chia 13 dư 1
Bạn ơi, bạn cũng xem lại giúp mình luôn nha
2020 đâu có chia hết cho 3
Với lại dãy này có 2023 số đó bạn, 2023 cũng đâu chia hết cho 3 đâu
\(M=1+3+3^2+............+3^{100}\)
\(\Leftrightarrow M=1+3+\left(3^2+3^3+3^4\right)+\left(3^5+3^6+3^7\right)+.......+\left(3^{98}+3^{99}+3^{100}\right)\)
\(\Leftrightarrow M=4+3^2\left(1+3+3^2\right)+3^5\left(1+3+3^2\right)+......+3^{98}\left(1+3+3^2\right)\)
\(\Leftrightarrow M=4+3^2.13+3^5.13+.........+3^{98}.13\)
\(\Leftrightarrow M=4+13\left(3^2+3^5+..........+3^{98}\right)\)
Mà \(13\left(3^2+3^5+......+3^{98}\right)⋮13\)
\(4:13\left(dư4\right)\)
\(\Leftrightarrow M:13\left(dư4\right)\)
b, tương tự
Bạn ơi mik vẫn chưa hiểu M=4+\(3^2\)+.....(mik chỉ viết ngắn gọn hoy) thì 4 bạn lấy ở đâu ra,rõ ràng đầu bài chỉ cho 1 thui mak
B=3+3²+3³+..... +3¹00
B=3²+3³+3⁴+... 3¹00+3
B=3²(1+3+3²) +... +3 98(1+3+3²) +3
B=3²•13+... +3 98•13+3
=) 3²•13+3 98•13 chia hết cho 13
=) Số dư là 3
ko có dư
T..i..c..k đi rùi mk làm đầy đủ cho
A=1+32+34+.............+32016
A=(1+32+34)+.........+(32010+32012+32014)+32016
A=7.13+...........+32010.(1+32+34)+32016
A=7.13+...........+32010.7.13+32016
A=7.(13+........+32010.13)+32016
Vậy A chia 13 dư 32016
Ta có:33=27 đồng dư cới 1 (mod 13)
=>(33)672 đồng dư với 1672(mod 13)
=>32016 đồng dư với 1 (mod 13)
=>32016 chia 13 dư 1
Vậy A chia 13 dư 1