K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 1 2016

n=1 thì tông :1!=1=12 => là scp

n=2 thì....................=> ko là scp

n=3 thì tổng :1!+2!+3!=9= 3 bình

n lớn hơn hăc bằng 4 thì tổng của dãy số có tc là 3 mà scp ko có tc là 3 =>loại n>/= 4

vậy................

bài này mik làm tốt thi hsg mik làm đc

8 tháng 1 2016

Em mới học lơpd5 à hic hic

10 tháng 12 2018

ai nhanh tôi k cho

26 tháng 2 2019

Tự túc là hạnh phúc! OK?

9 tháng 2 2016

đặt s(n) = 1! + 2! + ... + n! 
s(1) = 1 và s(3) = 9 là số chính phương. 
s(2) = 3 và s(4) = 33 không là số chính phương. 
Với n ≥ 5 có n! chia hết cho 10 - do trong tích có 2 thừa số là 2 và 5 - nên n! tận cùng bằng 0 
Vậy với n ≥ 5 có s(n) = s(4) + 5! + ... + n! tận cùng bằng 3. Do số chính phương không tận cùng bằng 3 (chỉ tận cùng bằng 0, 1, 4, 5, 6, 9) nên với n ≥ 5 có s(n) không là số chính phương. 
Vậy chỉ với n = 1 và n = 3 tổng đã cho là số chính phương.

Nguồn: yahoo

9 tháng 2 2016

n=1 hoac n=3

24 tháng 7 2015

trên yahoo mình copy ra nè 

đặt s(n) = 1! + 2! + ... + n! 
s(1) = 1 và s(3) = 9 là số chính phương. 
s(2) = 3 và s(4) = 33 không là số chính phương. 
Với n ≥ 5 có n! chia hết cho 10 - do trong tích có 2 thừa số là 2 và 5 - nên n! tận cùng bằng 0 
Vậy với n ≥ 5 có s(n) = s(4) + 5! + ... + n! tận cùng bằng 3. Do số chính phương không tận cùng bằng 3 (chỉ tận cùng bằng 0, 1, 4, 5, 6, 9) nên với n ≥ 5 có s(n) không là số chính phương. 
Vậy chỉ với n = 1 và n = 3 tổng đã cho là số chính phương.

31 tháng 12 2016

Mình không biết vi mình cũng đi hỏi bài này mà..sorry.

3 tháng 5 2016

Với n = 1 thì 1! = 1 = 1² là số chính phương .

Với n = 2 thì 1! + 2! = 3 không là số chính phương

Với n = 3 thì 1! + 2! + 3! = 1+1.2+1.2.3 = 9 = 3² là số chính phương 

Với n ≥ 4 ta có 1! + 2! + 3! + 4! = 1+1.2+1.2.3+1.2.3.4 = 33 còn 5!; 6!; …; n! đều tận cùng bởi 0 do đó 1! + 2! + 3! + … + n! có tận cùng bởi chữ số 3 nên nó không phải là số chính phương .

Vậy có 2 số tự nhiên n thỏa mãn đề bài là n = 1; n = 3. 

3 tháng 5 2016

Với n = 1 thì 1! = 1 = 1² là số chính phương . 
Với n = 2 thì 1! + 2! = 3 không là số chính phương 
Với n = 3 thì 1! + 2! + 3! = 1+1.2+1.2.3 = 9 = 3² là số chính phương 
Với n ≥ 4 ta có 1! + 2! + 3! + 4! = 1+1.2+1.2.3+1.2.3.4 = 33 còn 5!; 6!; …; n! đều tận cùng bởi 0 do đó 1! + 2! + 3! + … + n! có tận cùng bởi chữ số 3 nên nó không phải là số chính phương . 
Vậy có 2 số tự nhiên n thỏa mãn đề bài là n = 1; n = 3.

3 tháng 5 2016

Với n = 1 thì 1! = 1 = 1² là số chính phương . 
Với n = 2 thì 1! + 2! = 3 không là số chính phương 
Với n = 3 thì 1! + 2! + 3! = 1+1.2+1.2.3 = 9 = 3² là số chính phương 
Với n ≥ 4 ta có 1! + 2! + 3! + 4! = 1+1.2+1.2.3+1.2.3.4 = 33 còn 5!; 6!; …; n! đều tận cùng bởi 0 do đó 1! + 2! + 3! + … + n! có tận cùng bởi chữ số 3 nên nó không phải là số chính phương . 
Vậy có 2 số tự nhiên n thỏa mãn đề bài là n = 1; n = 3.

3 tháng 5 2016

Với n = 1 thì 1! = 1 = 1² là số chính phương .

Với n = 2 thì 1! + 2! = 3 không là số chính phương

Với n = 3 thì 1! + 2! + 3! = 1+1.2+1.2.3 = 9 = 3² là số chính phương 

Với n ≥ 4 ta có 1! + 2! + 3! + 4! = 1+1.2+1.2.3+1.2.3.4 = 33 còn 5!; 6!; …; n! đều tận cùng bởi 0 do đó 1! + 2! + 3! + … + n! có tận cùng bởi chữ số 3 nên nó không phải là số chính phương .

Vậy có 2 số tự nhiên n thỏa mãn đề bài là n = 1; n = 3.